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ABSTRACT
With continuously increasing demand for accurate data, the sam-

pling design of surveys has become more and more complex. Unequal 
probability sampling methods are therefore increasingly used in sample 
surveys. Item nonresponse is inevitable in survey practice. How to 
obtain unbiased estimation with data imputation for a complex survey 
is thus an important issue for research. Previous studies have presented 
some imputed estimators for equal probability sampling with uniform 
response. It would be worthwhile to explore the performance of 

✽  Financial support by the National Science Council of Taiwan with project number NSC 
94–2118-M–305–005 is very much appreciated. The author would like to thank Mr. 
Yuan-Yi Huang at National Taipei University for his assistance in the simulation pro-
gramming work and to thank the referees for their thoughtful and valuable comments 
and suggestions.

✽✽  ���������������������������������������������������������������������������������������Associate Professor, Department of Statistics, National Taipei University, Taipei, Tai-
wan. 67 Section 3, Min-Sheng East Rd., Taipei 104, Taiwan, R.O.C. Tel.: +886 2 
25024654. E-mail address: hsu@mail.ntpu.edu.tw

調查研究—方法與應用/第 46期
2021年 4月，頁 7–54



8　調查研究—方法與應用/第 46期

imputed estimators applied to complex surveys, such as unequal prob-
ability sampling or different missing data mechanisms. This study aims 
to present imputed estimators of the population mean for survey data 
imputed with an auxiliary variable under a stratified unequal probability 
sampling design, and to compare their performance in terms of different 
missing data mechanisms and different levels of the correlation coef-
ficient between the auxiliary variable and the variable of interest.

By taking nonresponse and imputation into account, this study 
derives three imputed estimators (weighted, unweighted, and bias-
adjusted imputed estimators) and their corresponding variance estima-
tors with stratified unequal probability sampling, where missing data 
are imputed by ratio imputation. Six cases under different conditions 
(missing data mechanisms, population distribution, and sample allo-
cation) are selected for a simulation study to compare the performance 
of the proposed imputed estimators in terms of relative bias and coef-
ficient of variation. The relative bias of the variance estimators is also 
studied to compare the performance of the corresponding variance 
estimators. A practical application is performed to show how to apply 
the imputed estimators derived in this study to real survey data.

As expected, simulation results show that the performance of the 
estimators varies depending on the missing data mechanisms, popula-
tion distributions, and methods of sample allocation. Simulation results 
indicate that the estimation precision of the imputed estimator increases 
as the correlation between the auxiliary variable and the variable of 
interest increases for all three imputed estimators. The imputed esti-
mators perform with greater stability in cases of missing completely 
at random (MCAR) than in cases of missing at random (MAR). 

Comparing the performance among the three imputed estimators, 
this study shows that in cases of high correlation between the auxiliary 
variable and the variable of interest, the proposed bias-adjusted esti-
mator works well with stratified unequal probability sampling in reduc-
ing the estimation bias and the underestimation of mean square error 
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(MSE) due to unweighted imputation. Moreover, the variance estima-
tor of the bias-adjusted estimator has the smallest relative bias for esti-
mating MSE compared with the two others. The unadjusted imputed 
estimator with unweighted imputation may cause estimation bias, while 
its corresponding variance estimators may also underestimate the MSE 
of the estimator. However, simulation results do not reveal that the bias-
adjusted estimator performs better than the imputed estimator with 
weighted imputation except at a high level of correlation between the 
auxiliary variable and the variable of interest. In practice, an auxiliary 
variable which has high correlation with the variable of interest, is 
commonly used to impute missing values to increase estimation pre-
cision. If the survey weights are unavailable and unweighted ratio 
imputation is used to impute missing values, the proposed bias-adjusted 
estimator with the corresponding variance estimator is suggested for 
obtaining a better estimation.

Keywords: nonresponse, ratio imputation, imputed estimator,
bias-adjusted estimator, unequal probability sampling

在分層不等機率抽樣下 
母體均數插補估計量之比較分析及應用✽

許玉雪✽✽

摘要

調查實務上遺漏值在所難免，如何在複雜抽樣設計下結合遺漏值

插補而能得到不偏估計量成為重要的研究課題。本文旨在探討分層不

等機率抽樣下結合輔助變數插補遺漏值的插補估計量在不同遺漏機制
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(MCAR、MAR) 及輔助變數與興趣變數之不同相關水準下的表現。本文

在分層不等機率抽樣下結合比率插補法導出三種母體均數插補估計量

(加權、未加權及偏誤調整 )及其變異數估計量。利用插補估計量之

相對偏誤及變異係數與其變異數估計量之相對偏誤，比較分析插補估

計量的表現，並以一實例說明這些插補估計量如何應用於實際調查資

料。模擬結果顯示，三個估計量的估計精確度都將隨著輔助變數和興

趣變數相關性的增加而增加，插補估計量在 MCAR 遺漏機制表現較為

穩定。本文所提偏誤調整插補估計量在輔助變數與興趣變數具有高度

相關時，確可減少來自未加權的估計偏誤並降低均方誤的低估。實務

上，若無權重資料可用而採未加權比率插補，本文所提的偏差調整插

補估計量可用以得到較佳的估計。

關鍵詞：無回應、比率插補、插補估計量、偏誤調整估計量、不等機

率抽樣

I. Introduction

The continuing demand for accurate data has caused the designing of 
sampling procedures to become complex. In order to obtain samples with 
market representativeness, the method of unequal probability sampling is 
increasingly employed in sample surveys. Item nonresponse is inevitable, 
even if a sampling survey has been designed very cautiously and interviewers 
have put a lot of effort into following up on nonresponse items. There are 
three types of missing data mechanisms: (1) missing completely at random 
(MCAR), (2) missing at random (MAR), and (3) non-ignorable nonresponse 
(Little and Rubin 1987). Cases with missing data can be imputed or simply 
ignored and deleted. Simply dropping cases with item nonresponse would 
lose some information, whereas imputation may result in an estimation bias. 
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In practice, how to have a complete data set with some missing information 
imputed and without estimation bias is always a topic for research. The impu-
tation methods are usually categorized as single-imputation and multiple-
imputation (Chen and Haziza 2019). Random hot-deck, mean imputation, 
regression imputation, and ratio imputation are commonly used in current 
surveys. Numerous studies have dealt with nonresponse and imputation 
items. Most consider imputed non-respondents to be observed data and use 
standard formulas for estimation. This may lead to bias and inconsistent 
estimation when there is a large proportion of missing data. Both the impu-
tation method and corresponding estimator must be discussed with respect 
to the sampling design to preserve the representativeness of the sample.

Because the sampling with probability proportional to size (PPS) has 
been increasingly used in survey practice, a lot of work has been done in 
deriving estimators under PPS sampling (Rao 1966; Keeble et al. 2015). Rao 
(1966) proposed alternative estimators which were poorly correlated with 
the selection probabilities in PPS sampling schemes for multiple character-
istics and showed that the proposed alternative estimators had greater rela-
tive efficiency than that of the usual estimators under a super-population 
model. Keeble et al. (2015) summarized the methods used for reducing selec-
tion bias and proposed a tool to choose a method to reduce selection bias. 
The Horvitz-Thompson estimator (Horvitz and Thompson 1952) is a gen-
eral technique to estimate a finite population total when a sample is selected 
with unequal probabilities without replacement. Al-Jararha and Sulaiman 
(2020) modify the Horvitz-Thompson estimator based on the availability of 
the auxiliary variable and show that the modified estimator performs signifi-
cantly better than the original estimator.

Variance estimation that takes nonresponse and imputation into account 
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has been studied by Särndal (1992), Shao and Steel (1999), Rao and Shao 
(1992), Skinner and Rao (2002), and Haziza and Rao (2003). Of these, Rao 
and Shao (1992) as well as Skinner and Rao (2002) used the jackknife tech-
nique to derive variance estimators, while Shao and Steel (1999) as well as 
Haziza and Rao (2003) derived linearization variance estimators. It has been 
proved that both the jackknife technique and the linearization technique can 
obtain asymptotically unbiased estimators (Skinner and Rao 2002; Haziza 
and Rao 2003). In addition, the variance estimators based on the lineariza-
tion technique are also consistent (Shao and Steel 1999). Haziza and Rao 
(2003) used the delta method to derive linearization variance estimators, 
which are asymptotically unbiased and consistent estimators. Särndal (1992) 
developed an estimation of variance in terms of the sum of sampling vari-
ance and an imputation variance. Shao and Steel (1999) proposed a linear-
ization variance estimator for Horvitz-Thompson-type estimated totals, which 
can be derived under either design-based approach or model-assisted 
approach, and are asymptotically unbiased and consistent. 

Since the imputation procedure may lead to bias in standard estimators, 
a bias-adjusted estimator has been developed (Rao and Shao 1992; Skinner 
and Rao 2002; Haziza and Rao 2003; 2005). Skinner and Rao (2002) showed 
that the imputation procedure may lead to bias in standard estimators. They 
further derived a bias-adjusted estimator under simple random sampling, 
which extended the research ideas of Rao and Shao (1992). In addition, the 
paper pointed out that if the imputed values are treated as actual responses, 
the standard error of the estimator is usually underestimated. Jackknife vari-
ance estimators were used for both the standard imputed and bias-adjusted 
imputed estimators in the study. Simulation study under hot-deck imputation 
showed that the empirical standard deviation of the bias-adjusted estimator 
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was somewhat larger than that of the unadjusted one. Jackknife variance 
estimators derived by Skinner and Rao (2002) have addressed the underes-
timation problem of the standard error.

Following Skinner and Rao (2002), Haziza and Rao (2003) proposed 
bias-adjusted estimators of a population mean under unweighted imputation 
and derived linearization variance estimators as well. A simulation study is 
conducted to compare the performance of these methods in terms of bias and 
mean square error (MSE) under uniform response. The study results show 
that the bias-adjusted estimator performs better than the unadjusted estimator 
under unweighted imputation, while the variance estimator of the imputed 
estimator under unweighted imputation leads to serious underestimation of 
MSE when there is a large correlation between the variable of interest and 
the auxiliary variable. Haziza and Rao (2005) studied the estimation of 
domain totals and means under survey–weighted regression imputation for 
missing items by using design–based estimation with uniform response 
within classes and model–assisted estimation with ignorable response and an 
imputation model. Moreover, previous studies have compared model-based 
estimation with design-based estimation and emphasized the advantages of 
using a design-based approach (Särndal 1978; Wheeler et al. 2007; Knaub 
2017). In practice, if the survey weights are unavailable and unweighted 
imputation is used to impute missing values, the unadjusted estimator may 
lead to estimation bias and underestimation of MSE (Haziza and Rao 2003).

It would be interesting to explore the imputed estimators with a design-
based approach for a complex survey. This study thus intends to present 
imputed estimators for survey data imputed with an auxiliary variable under 
a stratified unequal probability sampling design, and to compare their per-
formance in different missing data mechanisms and different levels of the 
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correlation coefficient between the auxiliary variable and the variable of 
interest. Therefore, using ratio imputation with an auxiliary variable, three 
imputed estimators (weighted, unweighted, and bias-adjusted imputed esti-
mators) and their corresponding variance estimators are derived under the 
stratified unequal probability sampling design in section 2. In section 3, a 
simulation study is conducted to compare the performance of the three pro-
posed imputed estimators in six different cases, in terms of relative bias and 
coefficient of variation of the estimators. The relative bias of the variance 
estimators is also studied to compare the performance of the corresponding 
variance estimators. Furthermore, a practical application is also performed 
in section 4 to show how to apply the imputed estimators to real data.

2. Imputed Estimators under 
Stratified Unequal Probability Sampling

In stratified sampling the population of N units is stratified into L 
strata. The population mean, Ȳ, is written as (Cochran 1977)

L Nh L
∑ ∑ yhi ∑ NhȲh

=
L
∑ WhȲh ,

h=1
Ȳ = h=1 i=1 = h =1 (1)N N

where suffix h denotes the stratum and i the unit within the stratum, while 
Nh, Ȳh, Wh are the total number of units, true mean, and stratum weight from 
stratum h, respectively. In this study, a probability sample is selected inde-
pendently from each stratum and the imputation is done independently in 
each stratum. The imputed estimators are derived and shown in Appendix 
1. For each stratum, the imputed estimators of the population mean, ȳimp, 

ȳ wr
imp , ȳ uwr

imp , and ȳ adj
imp , are given by (A1.1)–(A1.3) and (A1.5) in Appendix 1, 
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respectively. The stratified probability sampling requires some additional 
notation. The following symbols all refer to stratum h.

ȳhr: Sample mean using the subset of units with responses
ȳimp, h:	 Imputed estimator of true mean with imputation
ȳ wr

imp, h:	 Imputed estimator of true mean under weighted ratio imputation
ȳ uwr

imp, h:	� Imputed estimator of true mean under unweighted ratio imputa-
tion

ȳ adj
imp, h:	� Bias-adjusted estimator of true mean under unweighted ratio 

imputation
υ( ȳ wr

imp, h): Variance estimator of ȳ wr
imp, h

υ( ȳ uwr
imp, h): Variance estimator of ȳ uwr

imp, h

υ( ȳ adj
imp, h): Variance estimator of ȳ adj

imp, h .

2.1 Estimation of Population Mean

2.1.1 Standard Estimator with Complete-case Method

Suppose that a probability sample is drawn by stratified sampling with 
unequal probability without replacement. The Horvitz-Thompson estima-
tor proposed by Horvitz and Thompson (1952) is generally used with 
unequal probability sampling to obtain an unbiased estimator. The 
designed-based estimator under the sampling design of stratified sampling 
with unequal probability without replacement is thus expressed with the 
Horvitz-Thompson estimator. For each stratum we classify the probability 
sample (Sh) into two subsets (Shr and Shm), where Shr is the set of respon-
dents of size rh, and Shm is the set of non-respondents of size mh; rh +mh =nh. 
For a complete data set, an unbiased estimator of the population mean under 
stratified PPS sampling design, ȳst, can be written as follows (see Cochran 
1977; Hedayat and Sinha 1991)
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L
∑ Nhȳh

=
L
∑ Whȳh ,

h=1
ȳst = h=1 (2)N

where ȳh = yhi 1∑ ∑πhi πhii∈sh i∈sh

 is the Horvitz-Thompson estimator for stratum 
h, and πhi is the probability of including unit i in the sample for stratum h. 
For an incomplete data set (one with missing values), the estimator for the 
population mean based on the complete-case method1 in stratified sampling, 
ȳstr, is given by

L
ȳstr = ∑ Whȳhr , (3)

h=1

where ȳhr = yhi 1∑ ∑πhi πhii∈shr i∈shr

.

2.1.2 Estimation with Data Imputation

(1) Imputed Estimator with Weighted Imputation

In this study, a ratio imputation, which takes advantage of the relation-
ship between the auxiliary variables and the variable of interest, is used for 
imputing missing values. Suppose that the imputation is done independently 
in each stratum. Weighted ratio imputation uses R̂rxi to impute missing yi. 
R̂r = ȳr

x̄r
 is the ratio of the weighted means of respondents of variables y and 

x, where ȳr =(∑
sr

wiyi) / ∑
sr

wi, x̄r =(∑
sr

wixi) / ∑
sr

wi, and wi is the sampling weight 
of the unit i (see detailed derivation in Appendix 1). The formula of the 
imputed estimator with weighted ratio imputation for each stratum, ȳ wr

imp , is 
thus expressed as (A1.2) in Appendix 1. Hence, the imputed estimator of 
the population mean with stratified probability sampling without replace-

1	� The complete-case method is the method that simply drops the cases (units) with nonre-
sponse items from the analysis and uses only complete cases. 
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ment under weighted ratio imputation, ȳ wr
st  (referred to as weighted imputed 

estimator), is given by

L
ȳ wr

st = ∑ Whȳ wr
imp, h , (4)

h =1

where ȳ wr
imp, h = R̂hr(∑

sh

whixhi) / ∑
sh

whi) is the imputed estimator with weighted 
ratio imputation in stratum h.
(2) Imputed Estimator with Unweighted Imputation

Similarly, in the case of unweighted ratio imputation, for each stra-
tum, R̂r

uwxi is used to impute missing yi, where R̂r
uw = ȳr

uw / x̄r
uw is the ratio of 

the unweighted means of respondents of variables y and x, ȳr
uw =(∑

sr

yi) / r  
and x̄r

uw =(∑
sr

xi) / r (detailed derivation in Appendix 1). The imputed estima-
tor with unweighted ratio imputation for each stratum, ȳ uwr

imp , is expressed as 
(A1.3) in Appendix 1. Therefore, the imputed estimator of the population 
mean in stratified probability sampling without replacement under 
unweighted ratio imputation, ȳ uwr

st  (referred to as unweighted imputed esti-
mator), is given by

L
ȳ uwr

st = ∑ Whȳ uwr
imp, h , (5)

h=1

where ȳ uwr
imp, h = 1 ∑whiyhi + R̂hr

uw ∑whixhi∑ whi shr shm
sh

 is the imputed estimator with

unweighted ratio imputation in stratum h.

2.1.3 Bias-adjusted Estimator with Unweighted Imputation

Under uniform response with assumption of a design-based approach, 
the imputed estimator under unweighted imputation may have a bias as 
shown in (A1.4). A bias-adjusted estimator for each stratum under 
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unweighted ratio imputation, ȳ adj
imp , is thus derived as (A1.5) to adjust the 

bias in equation (5). Hence, for the imputed estimator of the population 
mean with stratified sampling under unweighted ratio imputation, the 

adjusted estimator denoted as ȳ adj
st  (referred to as bias-adjusted imputed 

estimator) is given by

L
ȳ adj

st = ∑ Whȳ adj
imp, h , (6)

h=1

where ȳ adj
imp, h = ȳhr + R̂hr

uw(x̄h − x̄hr) is the bias-adjusted imputed estimator under 
unweighted ratio imputation in stratum h.

In summary, estimators of the population mean in equations (2) and (3) 
use only respondent data. Estimator (2) uses full sample values, while esti-
mator (3) uses only sample values of respondents. Equations (4) and (5) are 
the imputed estimators based upon the whole sample values consisting of 
observed values and the imputed values, which are under weighted and 
unweighted imputation, respectively. Moreover, the bias-adjusted estimator 
in equation (6) is intended to adjust the bias in the imputed estimator in equa-
tion (5). The ȳ wr

imp  is an approximately unbiased estimator of the population 
mean under uniform response (Haziza and Rao 2003). It is easy to verify 

that ȳ wr
st  is also an approximately unbiased estimator of the population mean 

Ȳ with stratified random sampling. Haziza and Rao (2003) have verified that 

the bias-adjusted estimator ȳ adj
imp  is an approximately unbiased estimator of 

the population mean under uniform response. We would like to further com-
pare the performance of these imputed estimators with different missing 
mechanisms.
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2.2 Variance Estimation

2.2.1 Standard Estimator without Imputation

Under a stratified unequal sampling probability design, taking a prob-
ability sample from each stratum independently, with a complete data set, 
the variance of ȳst for both proportional allocation and Neyman allocation 
is given by

L
V( ȳst)= ∑ Wh

2V( ȳh). (7)
h =1

The variance of the Horvitz-Thompson estimator ( ȳh) with fixed-size is 
expressed as 

1 Nh Nh yhi − yhj 2

,V( ȳh)= ∑ ∑ (πhiπhj −πhij) (8)Nh
2 πhi πhji=1 j> i

where πhij is the probability that the i th and j th units are both in the sample 
of stratum h (see Cochran, 1977). The Sen-Yates-Grundy estimator of V( ȳh) 
is written as

1 nh nh πhiπhj −πhij yhi − yhj 2

.υSYG( ȳh)= ∑ ∑ (9)Nh
2 πhij πhi πhji=1 j> i

Hence, the estimator of V( ȳst) is given as

L
υ( ȳst)= ∑ Wh

2υSYG( ȳh). (10)
h =1

For an incomplete data set, the estimator of the population mean 
based on the complete-case method is expressed as ȳstr in equation (3). The 
variance of ȳstr is usually estimated by the standard formula as equation 
(10). The variance estimator of ȳstr can be written as
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L
υ( ȳstr)= ∑ Wh

2υSYG( ȳhr), (11)
h =1

where ȳhr is defined as in equation (3).

2.2.2 Estimation with Imputation for Missing Survey Data 

Since imputation does not reproduce the true value of the nonresponse 
item, the imputation will therefore increase the variance of an estimated 
mean (Namboodiri 1978). The overall variance may contain two compo-
nents: a sampling variance and a variance due to imputation (Särndal 
1992). Using the variance proposed by Fay (1991), the variance of ȳimp 

under ratio imputation is expressed as

V( ȳimp)=V1( ȳimp − Ȳ )+V2( ȳimp − Ȳ ),� (12)

where V1( . )  is the variance with respect to sampling design, and V2( . ) 
denotes the variance with respect to the response mechanism. V( ȳimp)  is esti-
mated by υt =υ1 +υ2, where υ1 and υ2 are the estimators of V1( . ) and V2( . ), 
respectively. As mentioned above, both the jackknife technique and the 
linearization technique have been used to derive the variance estimator of 
the imputed estimator, while the linearization technique can obtain asymp-
totically unbiased and consistent estimators (Haziza and Rao 2003). We 
thus use linearization variance estimation with the delta method to derive 

the variance estimator for each of the imputed estimators ( ȳ wr
imp , ȳ uwr

imp , ȳ adj
imp ) 

as shown in Appendix 2.
In the case of survey data with missing items, if the imputation is 

done independently in each stratum, the variance estimators of ȳ wr
st , ȳ uwr

st , 
and ȳ adj

st  can be expressed as follows.
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L
υ( ȳ wr

st )= ∑ Wh
2υ( ȳ wr

imp, h)=υ1
wr+υ2

wr, (13)
h =1

L
υ( ȳ uwr

st )= ∑ Wh
2υ( ȳ uwr

imp, h)=υ1
uwr+υ2

uwr, (14)
h =1

L
υ( ȳ adj

st )= ∑ Wh
2υ( ȳ adj

imp, h)=υ1
adj+υ2

adj. (15)
h =1

That is, for each stratum, the υ( ȳ wr
imp, h), υ( ȳ uwr

imp, h), and υ( ȳ adj
imp, h) can be respec-

tively estimated by υ1
wr+υ2

wr, υ1
uwr+υ2

uwr, and υ1
adj+υ2

adj. A general formula υ1 =
υ(∑

s
wiqi) is used for estimating υ1

wr, υ1
uwr, and υ1

adj, the first component in equa-
tions (13)–(15). For unequal probability sampling, υ1 is estimated with a Sen-
Yates-Grundy estimator and given by

1 n n πiπj −πij qi − qj 2

,υ1 = ∑ ∑ (16)N2 πij πi πji=1 j> i

where πi is the probability of unit i being included in the sample, and πij is 
the joint probability of inclusion of units i and j in the sample. The compo-
nent qi for each estimator is derived as shown in Appendix 2. It gives qi =

1
∑
s
wi

(q1i − ȳ wr
imp ) for υ1

wr, qi = 1
∑
s
wi

(q2i − ȳ uwr
imp ) for υ1

uwr, and qi = 1
∑
s
wi

(q3i − ȳ adj
imp ) for

υ1
adj, where q1i, q2i, and q3i are expressed as in (A2.1), (A2.3), and (A2.5). 

Next, the estimators of the second component in equations (13)–(15), 
υ2

wr, υ2
uwr, and υ2

adj, are derived in Appendix 2 and presented by (A2.2), (A2.4), 
and (A2.6), respectively, which give

υ2
wr =

p̂(1− p̂) x̂ 2
S2

er

, (17)x̂a

N̂

υ2
uwr =

p̂(1− p̂) S2
er (1) + x̂− x̂a

2
S2

er (2) +2 x̂− x̂a
2
S2

er (3)

, (18)x̂au x̂au

N̂
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υ2
adj = p̂(1− p̂) N̂ [s2

yr +(R̂r
uw)2s2

xr −2R̂r
uwsyxr+(ĥ∑

s
wiai)2s2

er(2)∑wiai
s

+2(ĥ∑
s
wiai)(seyr−R̂r

uwsexr)],� (19)

where  p̂ =
∑wi
sr

∑wi
s

, x̂=∑
s
wixi, x̂a =∑

s
wiaixi, N̂=∑

s
wi, s2

er =
∑
s
wiai(yi −R̂ixi)2

∑
s
wiai

, x̂au =

∑
s
aixi, s2

er (1)=
∑
s
wiai(yi − R̂r

uwxi)2

∑
s
wiai

, s2
er(2)=

∑
s
wi

−1ai(yi−R̂r
uwxi)2

∑
s
wiai

, s2
er(3)=

∑
s
ai(yi − R̂r

uwxi)2

∑
s
wiai

,

ĥ = (x−−x−r)
∑
s
aixi

, s2
yr =

∑
s
wiai( yi − ȳr)2

∑
s
wiai

, s2
xr =

∑
s
wiai(xi −x−r)2

∑
s
wiai

, s2
yxr =

∑
s
wiai(xi −x−r)(yi − ȳr)

∑
s
wiai

,

s2
er(2)=

∑
s
wi

−1ai(yi−R̂r
uwxi)2

∑
s
wiai

, seyr=
∑
s
ai(yi−R̂r

uwxi)(yi− ȳr)
∑
s
wiai

, sexr=
∑
s
ai(yi−R̂r

uwxi)(xi −x−r)
∑
s
wiai

.

The sum of (16) and (17) gives υ( ȳ wr
st ) in (13), the estimator of the 

overall variance of ȳ wr
st . Similarly, the estimator υ( ȳ uwr

st ) in (14) is estimated 
by the sum of (16) and (18), while the estimator υ( ȳ adj

st ) in (15) is estimated 
by the sum of (16) and (19).

3. Simulation Study

3.1 Simulation Procedure

A Monte Carlo simulation experiment is conducted using R program-
ming language. The simulation procedure includes three steps: (1) several 
data sets consisting of three strata with some missing values are generated; 
(2) the missing values in each stratum were imputed independently with 
the ratio imputation methods proposed by this study; (3) the performance 
among three proposed imputed estimators of the population mean and cor-
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responding variance estimators are compared.
Two types of population were generated in this study. Each population 

with size N=1500 consists of three strata with N1 =550, N2 =450, and N3 =
500. The values (xi, yi) in each population were generated according to the 
ratio model y=βx+ ε with correlation between x and y equal to 0.9, 0.7, 0.5, 
0.3, and 0.1 to examine the performance of estimators in response to the 
correlation. For population type I, x and ε were independently generated 
from a normal distribution such that x~N(μi, σ=5) with μi =30, 50, 100 for 
i=1, 2, 3, respectively; ε~N(0, 1). For population type II, x and ε were gen-
erated from x~N(μi, σi) with (μi, σi)= (30, 5), (40, 10), and (50, 15) for i=
1, 2, 3, respectively; ε~N(0, 1). We assume that x has the same variance in 
different strata for the type I population (referred to as the homoscedastic 
population) but different variance in different strata for the type II popula-
tion (referred to as the heteroscedastic population).

Stratified PPS sampling is used to draw the probability samples with-
out replacement under both proportional allocation and Neyman allocation. 
With proportional allocation, 10,000 PPS samples, each of size n =150 and 
consisting of three strata (with size n1 =55, n2 =45, and n3 =50), are taken 
from each population according to Sampford’s PPS sampling method (Samp-
ford 1967), using variate x as the measure of size. In order to compare the 
performance among proposed imputed estimators under proportional and 
Neyman allocation, Neyman allocation is also used for the simulation study 
on the type II population. Under Neyman allocation, the sample size n=150 
was partitioned into three strata of size n1 =28, n2 =46, and n3 =76.

A response rate of 0.7 is commonly used in imputation studies to indi-
cate a certain degree of missing values, so it is used here for simulation 
studies. In each stratum, nonresponse to item y was generated from each PPS 



24　調查研究—方法與應用/第 46期

sample with a response rate of 0.72 according to the missing data mechanism 
and x is taken from all units in the sample. In this study, simulations were 
conducted for both missing data mechanisms MCAR and MAR. For each 
stratum, samples satisfy three conditions: (1) partial missing values in y; (2) 
no missing values in x; (3) yi and yj are independent for i≠ j. For the cases of 
MCAR, nonresponse to item y was generated based on a uniform response 
mechanism. For the cases of MAR, the following algorithms were used to 
generate data missing at random3

ri =
0, for Ui ≥P70

,� (20)
1, otherwise
Ui =αxi+εi ,� (21)

where Ui is a random variable depending on the value of standardized xi and 
a standard normal error εi; α is a constant. In order to meet a response rate of 
0.7, yi is deleted when ri is zero (as Ui is larger than its 70th percentile, P70).

With two population types, two methods of sample allocation to 
strata, and two missing data mechanisms, there are six cases of simulation 
conducted in this study as shown in Table 1.

Each simulation experiment consists of 10,000 stratified PPS samples. 

For each sample, values of ȳ wr
st , ȳ uwr

st , ȳ adj
st  and their corresponding estimated 

variances of υ( ȳ wr
st ), υ( ȳ uwr

st ), υ( ȳ adj
st ) are calculated based on equations (4)–

(6) and (13)–(15), respectively.
Usually bias and MSE are used to compare the performance of the esti-

mators. Since the parameters may differ in different cases, here we use rel-

2	�A  response rate of 0.7 is also used in Haziza and Rao (2003).
3	� There are similar examples in Little (1992) and Nittner (2003).
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Table 1  Settings of the simulation experiment

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Population type I II II I II II
Missing data
mechanism MCAR MCAR MCAR MAR MAR MAR

Sample
allocation Proportional Proportional Neyman Proportional Proportional Neyman

ative bias and the coefficient of variation (CV) instead of bias and MSE to 
compare the performance of the estimators. Hence, the imputed estimators 
are compared in terms of their relative bias and CV. Relative bias of the vari-
ance estimators is also used to compare the performance of the variance 
estimators. Let θ be a finite population parameter and θ̂ be its estimator. The 
relative bias of θ̂ denoted RB(θ̂ ) is given by

RB(θ̂ )= E(θ̂ )−θ ,� (22)θ

and the CV of θ̂ denoted CV(θ̂ ) is given by 

CV(θ̂ )= MSE(θ̂ ) .� (23)θ

The relative bias of the variance estimator, υ(θ̂ ), is then defined by

RB(υ(θ̂ ))= E(υ(θ̂ ) )−MSE(θ̂ ) .� (24)MSE(θ̂ )

The generated population varies with different cases under different 
levels of correlation between x and y, thereby obtaining different popula-
tion parameters (such as population mean and population variance). The 
relative bias is calculated by dividing bias by the target population param-
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eter as shown in equation (22) to avoid influence from the size of the 
parameter value. The relative bias instead of bias is thus used for comparing 
the bias among the estimators. Accordingly, the relative bias expressed in 
equation (22) is used to measure the bias of the imputed estimators for esti-
mating the population mean (Ȳ ) and to compare the performance among the 
imputed estimators. Similarly, the relative bias of the variance estimator in 
equation (24) is used to measure the bias of the variance estimator and to 
compare the performance among the variance estimators. Moreover, CV 
computed by dividing the standard deviation by the mean is a useful statistic 
for comparing the variability of variables that have different deviations and 
different means. CV in equation (23) is computed by dividing the square root 
of MSE by the population mean. To avoid influence from the size of the 
population mean, the CV instead of MSE is used in this study for comparing 
the relative efficiency among the imputed estimators.

The relative bias of the ȳ wr
st , ȳ uwr

st , and ȳ adj
st  are thus denoted RB( ȳ wr

st ), 
RB( ȳ uwr

st ), and RB( ȳ adj
st ), respectively, while the CV of the ȳ wr

st , ȳ uwr
st , and 

ȳ uwr
st  are respectively denoted CV( ȳ wr

st ), CV( ȳ uwr
st ), and CV( ȳ adj

st ). Similarly,  
RB(υ( ȳ wr

st )), RB(υ( ȳ uwr
st )), and RB(υ( ȳ adj

st )) denote the relative bias of the 
υ( ȳ wr

st ), υ( ȳ uwr
st ), and υ( ȳ adj

st ), respectively.

3.2 Simulation Results

In this section, the relative bias and CV of the imputed estimators are 
calculated to compare their performance, while the relative bias of the 
variance estimators is also studied to compare the performance of the cor-
responding variance estimators. Values of the above measures are calcu-
lated from the generated 10,000 stratified PPS samples for each of the six 
simulation cases at different levels of the correlation coefficient (ρxy). The 
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simulation results of the six cases are summarized in Tables 2–7 and also 
displayed graphically in Appendix 3. The relative bias of imputed estimators, 
CV of the imputed estimators, and the relative bias of the variance estimators 
are displayed in Figures A3.1–A3.3 of Appendix 3, respectively. The values 
given in Tables 2–7 are respectively presented by cases 1–6 in Figures A3.1–
A3.3 to show the performance pattern of the estimators (denoted by weighted, 
unweighted, and bias-adjusted) along with the increase of the correlation 
coefficient between the auxiliary variable and the variable of interest.

3.2.1 Missing Completely at Random (MCAR)

Simulation results under MCAR for cases 1–3 are reported in Tables 
2–4, respectively and graphically displayed with case 1, case 2, and case 3 
in Figures A3.1–A3.3. As seen in Tables 2–4 and Figure A3.1, under MCAR, 
the simulation results clearly show that the absolute relative bias of the 

unweighted imputed estimator ( ȳ uwr
st ) is larger than that of the other two 

imputed estimators (ȳ wr
st  and ȳ adj

st ) for all values of ρxy. The simulation results 
also show that no significant difference exists on the relative bias between 
the weighted imputed estimators and the bias-adjusted estimator for all values 
of ρxy. That implies that the bias-adjusted estimator may reduce the bias due 
to unweighted imputation. The simulation results show that all three imputed 
estimators may slightly overestimate the population mean for large ρxy, but 
underestimate the population mean for small ρxy.

Simulation results on the relative bias of the variance estimator show 
that all three variance estimators may underestimate MSE. The variance esti-

mator of the bias-adjusted estimator (υ( ȳ adj
st )) has a relatively small bias for 

all values of ρxy, and this is significantly smaller than that of the other two 

estimators (υ( ȳ wr
st ) and υ( ȳ uwr

st )) as shown in Tables 2–4 and Figure A3.3. The 
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negative bias of the variance estimator will respond to the underestimate of 
MSE. As seen in Tables 2–4 and Figure A3.2, the simulation results clearly 
show the CV ratios decrease along with the increase of ρxy for all three 

imputed estimators. The unweighted imputed estimator ( ȳ uwr
st ) has the small-

est CV ratio, followed by the weighted imputed estimator ( ȳ wr
st ) and the bias-

adjusted estimator ( ȳ adj
imp ) for all values of ρxy. Moreover, the CV ratios shown 

in Table 2 (case 1) are significantly smaller than those shown in Tables 3 and 
4 (cases 2 and 3) because the type II (heteroscedastic) population has a rela-

tively large variance. The small CV( ȳ uwr
st ) and large negative RB(υ( ȳ uwr

st )) 
indicate that the variance estimator of the unweighted imputed estimator 
may lead to underestimation of MSE, which coincides with the problem 
mentioned by Skinner and Rao (2002) and Haziza and Rao (2003). In con-

trast, the small absolute RB( ȳ adj
st ) and small negative RB(υ( ȳ adj

st )) with the 
slightly high CV( ȳ adj

st ) of the bias-adjusted estimator indicate that the bias-

Table 2  Simulation results for case 1 

— type I population, proportional allocation, MCAR (%)

ρyx =0.9 ρyx =0.7 ρyx =0.5 ρyx =0.3 ρyx =0.1

RB( y−st
wr) 0.028 0.036 0.025 0.007 −0.022

RB( y−st
uwr) 0.028 0.047 0.029 −0.028 −0.073

RB( y−st
adj) 0.028 0.036 0.025 0.006 −0.022

CV( y−st
wr) 0.746 1.131 1.566 2.288 6.132

CV( y−st
uwr) 0.744 1.127 1.556 2.272 6.079

CV( y−st
adj) 0.777 1.200 1.689 2.516 6.707

RB(υ( y−st
wr)) −0.145 −0.099 −0.035 −0.001 −0.001

RB(υ( y−st
uwr)) −0.146 −0.171 −0.026 −0.015 −0.014

RB(υ( y−st
adj)) −0.134 −0.088 −0.030 −0.001 −0.001
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Table 3  Simulation results for case 2 

— type II population, proportional allocation, MCAR (%)

ρyx =0.9 ρyx =0.7 ρyx =0.5 ρyx =0.3 ρyx =0.1

RB( y−st
wr) 0.057 0.063 0.080 0.054 −0.401

RB( y−st
uwr) 0.064 0.079 0.130 0.083 −0.469

RB( y−st
adj) 0.057 0.063 0.080 0.053 −0.400

CV( y−st
wr) 1.602 2.164 3.268 5.519 15.051

CV( y−st
uwr) 1.596 2.144 3.220 5.436 14.774

CV( y−st
adj) 1.664 2.292 3.490 5.978 16.360

RB(υ( y−st
wr)) −0.128 −0.084 −0.060 −0.010 −0.071

RB(υ( y−st
uwr)) −0.161 −0.136 −0.164 −0.023 −0.101

RB(υ( y−st
adj)) −0.119 −0.076 −0.053 −0.008 −0.060

Table 4  Simulation results for case 3 

— type II population, Neyman allocation, MCAR (%)

ρyx =0.9 ρyx =0.7 ρyx =0.5 ρyx =0.3 ρyx =0.1

RB( y−st
wr) 0.024 0.092 0.027 0.092 −0.043 

RB( y−st
uwr) 0.031 0.107 0.079 0.115 −0.128 

RB( y−st
adj) 0.024 0.093 0.028 0.092 −0.044 

CV( y−st
wr) 1.794 2.385 3.645 6.044 16.878

CV( y−st
uwr) 1.787 2.362 3.592 5.941 16.565

CV( y−st
adj) 1.816 2.416 3.641 6.162 16.959

RB(υ( y−st
wr)) −0.018 −0.150 −0.006 −0.023 −0.001 

RB(υ( y−st
uwr)) −0.031 −0.204 −0.048 −0.038 −0.006 

RB(υ( y−st
adj)) −0.017 −0.147 −0.006 −0.022 −0.001
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adjusted estimator may reduce the bias made by unweighted imputation, and 
its corresponding variance estimator may also reduce the underestimation 
of MSE more or less. However, the simulation results show that the CV of 
the bias-adjusted estimator is slightly larger than that of the weighted imputed 
estimator for all values of ρxy. This implies that from an efficiency perspec-
tive, the performance of the bias-adjusted estimator may not be better than 
the imputed estimator with weighted imputation.

As expected, the simulation results show that the performance of the 
imputed estimators depends on the correlation coefficients ρxy and varies 
with the population type and sample allocation. Under the MCAR missing 
mechanism, the simulation results show that the MSE of the imputed esti-
mator may decrease as the ρxy increases for all of the three imputed estima-
tors. This result shows that an auxiliary variable with high ρxy can be used 
to increase precision. However, the unweighted imputed estimator may 
overestimate the population mean, while its corresponding variance esti-
mators may also underestimate MSE of the estimator if the correlation is 
high. The study results imply that for the cases of the MCAR, the proposed 
bias-adjusted estimator and its corresponding variance estimator may 
decrease the estimation bias and also reduce the underestimation of MSE 
due to unweighted imputation.

3.2.2 Missing at Random (MAR)

Simulation results under MAR for cases 4–6 are reported in Tables 5–
7, respectively and graphically displayed with case 4, case 5, and case 6 in 
Figures A3.1–A3.3. Simulation results under MAR show that the relative 
bias does not reveal an apparent pattern accompanying the change of ρxy. 
However, the absolute relative bias of the imputed estimators is small if ρxy



Comparative �nalysis and �pplication of Imputed Estimators for Population Mean under Stratified Unequal Probability Sampling　31

>0.5 and is large if ρxy <0.5 as shown in Figure A3.1, cases 4–6. The results 

in Tables 5–7 show that the bias-adjusted estimator ( ȳ adj
st ) can slightly reduce 

the estimation bias from unweighted imputation when ρxy is high. Like in the 
MCAR cases, Tables 5–7 and Figure A3.3 show that the variance estimator 

of the bias-adjusted estimator (υ( ȳ adj
st )) has a relatively small bias compared 

to that of the other two estimators (υ( ȳ wr
st ) and υ( ȳ uwr

st )). That is, the variance 
estimator of the bias-adjusted estimator has the smallest relative bias for 
estimating MSE. Tables 5–7 and Figure A3.2 clearly show that the CV ratios 
of the imputed estimators decrease as ρxy increases for all three imputed 
estimators. Especially for the cases under MAR, the CV of the bias-adjusted 
estimator is smaller than the two others at ρxy =0.9. In general, the bias-
adjusted estimator proposed by this study under MAR has better performance 
at a high level of correlation. Under MAR, the bias-adjusted estimator does 
not perform better than the imputed estimator with weighted imputation 
except at ρxy =0.9.

Table 5  Simulation results for case 4  

— type I population, proportional allocation, MAR (%)

ρyx =0.9 ρyx =0.7 ρyx =0.5 ρyx =0.3 ρyx =0.1

RB( y−st
wr) 0.012 −0.147 0.004 0.451 0.721 

RB( y−st
uwr) 0.013 −0.142 −0.006 0.429 0.683 

RB( y−st
adj) 0.012 −0.147 0.002 0.447 0.716 

CV( y−st
wr) 0.755 1.153 1.620 2.403 6.400

CV( y−st
uwr) 0.753 1.149 1.610 2.384 6.348

CV( y−st
adj) 0.729 1.207 1.752 2.661 7.085

RB(υ( y−st
wr)) −0.025 −1.635 −0.001 −3.528 −1.268 

RB(υ( y−st
uwr)) −0.031 −1.528 −0.002 −3.233 −1.156 

RB(υ( y−st
adj)) −0.028 −1.481 0.000 −2.829 −1.021
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Table 6  Simulation results for case 5 

— type II population, proportional allocation, MAR (%)

ρyx =0.9 ρyx =0.7 ρyx =0.5 ρyx =0.3 ρyx =0.1

RB( y−st
wr) 0.050 −0.003 −0.410 −0.190 0.278 

RB( y−st
uwr) 0.057 0.016 −0.366 −0.207 0.257 

RB( y−st
adj) 0.052 0.000 −0.402 −0.194 0.271 

CV( y−st
wr) 1.622 2.232 3.443 5.773 15.940

CV( y−st
uwr) 1.615 2.211 3.392 5.694 15.680

CV( y−st
adj) 1.612 2.357 3.759 6.497 18.037

RB(υ( y−st
wr)) −0.095 0.000 −1.420 −0.108 −0.030 

RB(υ( y−st
uwr)) −0.126 −0.005 −1.164 −0.132 −0.027 

RB(υ( y−st
adj)) −0.013 0.000 −1.145 −0.089 −0.023

Table 7  Simulation results for case 6 

— type II population, Neyman allocation, MAR (%)

ρyx =0.9 ρyx =0.7 ρyx =0.5 ρyx =0.3 ρyx =0.1

RB( y−st
wr) 0.041 −0.005 −0.344 −0.223 0.448 

RB( y−st
uwr) 0.048 0.015 −0.301 −0.242 0.394 

RB( y−st
adj) 0.042 −0.002 −0.336 −0.227 0.435 

CV( y−st
wr) 1.815 2.466 3.802 6.357 17.879

CV( y−st
uwr) 1.808 2.442 3.748 6.278 17.591

CV( y−st
adj) 1.789 2.570 4.083 7.070 19.920

RB(υ( y−st
wr)) −0.050 0.000 −0.820 −0.123 −0.063 

RB(υ( y−st
uwr)) −0.071 −0.004 −0.643 −0.148 −0.050 

RB(υ( y−st
adj)) −0.056 0.000 −0.678 −0.014 −0.048
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For MAR cases, comparing the values in Table 5 with the values in 
Tables 6 and 7 we can see that the performance of the estimators has a sig-
nificant difference between homoscedastic and heteroscedastic populations. 
Besides, Figures A3.1–3.3 clearly show a similar pattern between case 5 
and case 6. That implies that the performance of imputed estimators under 
MAR is more affected by population distribution than by sample allocation. 
Although the bias-adjusted estimator under MAR may not reduce bias as 
stably as that under MCAR, the simulation results indicate that the bias-
adjusted estimator has better performance at a high level of correlation.

In summary, performance of the proposed bias-adjusted estimator var-
ies in different cases. For the cases of MCAR with proportional allocation, 
the proposed bias-adjusted estimator works very well. Comparing the sim-
ulation results of MCAR cases and MAR cases, the performance of the bias-
adjusted estimator proposed by this study under MAR is not as stable as that 
under MCAR. The simulation results under MAR show that the relative bias 
of all the estimators does not reveal an apparent pattern but is unstable at 
different levels of correlation coefficients, ρxy. Especially for the cases of 
the MAR missing data mechanism and a heteroscedastic population, the 
performance of imputed estimators is significantly affected by the level of 
correlation coefficients. Furthermore, comparing the simulation results under 
strata with a homoscedastic population and a heteroscedastic population, 
the bias-adjusted estimator performs better under strata with a homoscedastic 
population. Thus, the performance of the bias-adjusted estimator proposed 
in this study depends on the missing data mechanisms, the types of the 
population distribution and the sample allocation used with the stratified 
unequal probability sampling.

In practice, we usually use auxiliary variables which have a high corre-
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lation with the variable of interest, to increase the precision of estimation. 
The simulation results in this study clearly show that the MSE of the imputed 
estimator may decrease as the ρxy increases for all three imputed estimators. 
This study result demonstrates that auxiliary variables with high ρxy can be 
used to increase the estimators’ precision. Moreover, although from an effi-
ciency perspective, the simulation results did not show that the bias-adjusted 
estimator performs better than the imputed estimator with weighted imputa-
tion except at ρxy =0.9 under MAR, the variance estimator of the bias-adjusted 
estimator has the smallest relative bias for estimating MSE. However, in 
cases of high correlation between the auxiliary variable and the variable of 
interest, the proposed bias-adjusted estimator works well with the stratified 
unequal probability under an MCAR or MAR missing mechanism to reduce 
the estimation bias and the underestimation of MSE due to unweighted 
imputation.

4. Practical Application

In practice, the stratified PPS sampling design is commonly used to 
obtain more accurate data. How to deal with missing values in a data set is 
always an issue in practical surveys. This paper presents three imputed esti-
mators (weighted, unweighted, and bias-adjusted) and their corresponding 
variance estimators derived with a stratified PPS sampling design under ratio 
imputation in section 2. A simulation study has been conducted in section 3 
to compare the performance of those estimators. This section intends to show 
how to apply the imputed estimators derived in section 2 to a real data set 
collected with a complex survey under a stratified PPS sampling design.

Considering the practical use of imputing methods and corresponding 
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estimations, this practical study uses data taken from the sampling survey 
in Hsu et al. (2001), which was designed with stratified PPS sampling. The 
sampling survey was conducted in 2001 to estimate collection and recycling 
costs of recycling home appliances by interviewing collectors and recycling 
plants in Taiwan. Under stratified sampling with PPS, collectors were first 
stratified by region into four strata. Some collectors are drawn from each 
stratum (region) with probabilities proportional to the collector’s size as 
measured by the collection quantity of the collector. The collection quantity 
provided by official statistics was used as an auxiliary variable for PPS 
sampling in the survey. That is, the sampling probability is proportional to 
the collection quantity of the collectors for each region to select collectors 
with higher market share.

Table A4.1 in Appendix 4 gives part of the survey data. In this data set, 
the cost variable has two missing values occurring in the central and eastern 
regions. The missing data are imputed by both weighted and unweighted 
ratio imputation expressed in Appendix 1. The collection quantity (x), which 
has high correlation (ρyx >0.75) with collection cost (y), is used as an auxil-
iary variable for both weighted and unweighted ratio imputations to take 
advantage of the relationship between collection cost and collection quantity. 
The imputed results are shown in Table 8. Based on three imputed estima-

tors ( ȳ wr
st , ȳ uwr

st , and ȳ adj
st ) presented in equations (4)–(6) and their correspond-

ing variance estimators (υ( ȳ wr
st ), υ( ȳ uwr

st ), and υ( ȳ adj
st )) presented in equations 

(13)–(15), the estimated means and their corresponding estimated variances 
are calculated and shown in Table 9.

With respect to the estimated mean, estimation results indicate that 
the estimate based on the bias-adjusted imputed estimator is close to that 
based on the weighted imputed estimator, while the estimate obtained by 
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the unweighted imputed estimator is relatively low. Moreover, regarding 
the estimated standard error, the estimate based on the unweighted imputed 
estimator is less than the others. The estimates as shown in Table 9 coincide 
with the simulation results in section 3; that is, the standard error based on 
the unadjusted estimator under unweighted ratio imputation may be under-
estimated. The average collection cost is estimated to be around NT$31,231 
with standard error of NT$9,404 based on the bias-adjusted estimator, and 
is estimated at around NT$31,316 with standard error of NT$8,930 based 
on the weighted imputed estimator.

In practice, if the survey weights are not available, we cannot estimate 
population mean by the weighted imputation estimator. The unadjusted 
imputed estimator with unweighted imputation (i.e. unweighted imputed esti-
mator) is usually used to estimate the population mean, which may lead to 
biased estimation and underestimation of MSE as shown in the simulation

Table 8  Imputed results

Region Collection quantity (unit)
Imputed collection cost (NT$)
Weighted Unweighted

Central 160 22,478.30 20,208.19
Eastern 700 100,083.69 41,081.45

Table 9  The estimated mean and variance

Imputed estimators Mean (NT$) Standard error (NT$)

Weighted y−st
wr =31,316 se( y−st

wr) =8,930
Unweighted y−st

uwr =30,786 se( y−st
uwr) =8,925

Bias-adjusted y−st
adj =31,231 se(y−st

adj) =9,404
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study. The bias-adjusted estimator proposed in this paper can be applied in 
this case to adjust the bias from unweighted imputation.

5. Conclusion

In practice, most complex surveys treat imputed missing values as 
observed data and use standard formulas to estimate population parameters. 
This may not only lead to serious bias and inconsistent estimation but also 
cause variance underestimation, especially when the proportion of missing 
values is not small. How to obtain unbiased estimation with data imputation 
under a complex survey is thus an important issue for research. This study 
takes nonresponse and imputation into account for estimating the population 
mean and derives three imputed estimators with corresponding variance 
estimators for a data set with missing values under a stratified unequal 
probability sampling design. Six cases are selected for study to compare 
the performance of the proposed estimators under different conditions 
(missing data mechanisms, population distribution, and sample allocation). 
A simulation study is conducted to see the performance of three imputed 
estimators in estimating the population mean with data imputation under 
stratified unequal probability sampling. A practical application is also pre-
sented to show how the imputed estimators work with real data.

As expected, the simulation results demonstrated that the performance 
of the estimators varies depending on the missing data mechanisms, popu-
lation distributions, and methods of sample allocation. Obviously, the 
imputed estimators perform better in the case of stratified unequal probabil-
ity sampling with proportional allocation under the strata with homogeneous 
variance. Simulation results also indicate that the imputed estimators perform 
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more stably in MCAR cases than in MAR cases. In practice, we usually use 
an auxiliary variable, which has high correlation with the variable of interest, 
to increase estimation precision. For all three imputed estimators, simula-
tion results indicate that the estimation precision of the imputed estimator 
increases as the correlation between the auxiliary variable and the variable 
of interest increases.

Comparing the performance among three imputed estimators, the results 
of this study show that in cases of high correlation between the auxiliary 
variable and the variable of interest, the proposed bias-adjusted estimator 
works well with the stratified unequal probability sampling under MCAR or 
MAR missing mechanism to reduce the estimation bias and the underesti-
mation of MSE due to unweighted imputation. Moreover, the variance 
estimator of the bias-adjusted estimator has the smallest relative bias for 
estimating MSE among the three. The unadjusted imputed estimator with 
unweighted imputation may cause estimation bias, while its corresponding 
variance estimators may also underestimate the MSE of the estimator. How-
ever, simulation results do not reveal that the bias-adjusted estimator per-
forms better than the imputed estimator with weighted imputation except at 
a high level of correlation between the auxiliary variable and the variable of 
interest. In practice, if the survey weights are unavailable and unweighted 
ratio imputation is used to impute missing values, the proposed bias-adjusted 
estimator with the corresponding variance estimator is suggested for better 
estimation.

In the cases of MAR and the cases of populations with heterogeneous 
variance, the imputed estimators proposed in this study are unstable. Improv-
ing the imputed estimators for stratified PPS sampling with heteroscedastic 
population under an MAR missing data mechanism would be an interesting 
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topic for future studies. Moreover, this study only explores imputed estima-
tors with single value imputation and focuses on the univariate estimation. 
Extension of the imputed estimator in conjunction with multiple imputations 
or incorporation into a multivariate estimation under a complex sample 
survey will be more complicated and therefore is a subject for future study.

This study focuses on the comparative analysis of imputed estimators 
with ratio imputation. The study results of the comparative analysis may not 
be changed at different response rates. Therefore, this paper takes a response 
rate (0.7) to represent a certain degree of missing values for the simulation 
study and does not conduct a comparative analysis of different response rates. 
However, the performance of imputed estimators may change in response to 
different response rates, especially when using different imputation methods. 
The comparative analysis of the imputed estimators with different imputa-
tion methods (such as hot-deck imputation, or regression imputation) at 
different response rates is also important and is left for further study.

In addition, the availability of the auxiliary variable (or control variate) 
is usually used for increasing estimation precision. This study applies an 
auxiliary variable with ratio imputation for imputing missing data. The 
Horvitz-Thompson estimation method is a general technique used with 
unequal probability sampling to obtain an unbiased estimator. Therefore, 
this study adopts the Horvitz-Thompson estimator to drive the imputed 
estimators with ratio imputation under stratified unequal probability sam-
pling. However, the auxiliary variable here is only used in the imputation 
stage and is not combined with the Horvitz-Thompson estimator. A modified 
Horvitz-Thompson estimator based on auxiliary variables (Al-Jararha and 
Sulaiman 2020) may further improve the efficiency of the imputed estima-
tor. The imputed estimator combining the Horvitz-Thompson estimator with 
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auxiliary variables (or control variates) is therefore of interest for further 
study.
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Appendix 1 Imputed Estimators of Population Mean

Suppose a probability sample, s, is classified into two subsets, sr and 
sm, where sr is the subset of respondents of size r, sm is the subset of non-
respondents of size m, and sample size n= r+m. The imputed estimator of 
the population mean after imputation, ȳimp, is given by the following (see 
Haziza and Rao 2003)

1
,ȳimp = ∑wiyi + ∑wiyi* (A1.1)∑

s
wi sr sm

where wi is the sampling weight of the unit i, and yi* is the imputed value 
for missing yi. In this study, the Horvitz-Thompson weight wi = 1

πi
 is used, 

where πi is the probability of unit i being included in the sample.
In the case of weighted ratio imputation, a variate xi correlated with yi is 

used as an auxiliary variable. R̂rxi is used for yi*. The imputed estimator with 

weighted ratio imputation, ȳ wr
imp (weighted imputed estimator) is given by

ȳ wr
imp = R̂r

∑
s
wixi

∑
s
wi

,� (A1.2)

where  R̂r =
ȳr

x−r
 with ȳr =

∑wiyi
sr

∑wi
sr

, and x−r =
∑wixi
sr

∑wi
sr

.

In the case of unweighted ratio imputation, R̂r
uwxi is used for yi*. The 

imputed estimator with unweighted ratio imputation, ȳ uwr
imp  ( unweighted 

imputed estimator) is given by

1
,ȳ uwr

imp = ∑wiyi + R̂r
uw ∑wixi (A1.3)∑

s
wi sr sm
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where  R̂r
uw =

ȳr
uw

x−r
uw  with ȳr

uw =
∑ yi
sr

r , and x−r
uw =

∑ xi
sr

r .

The bias of ȳ uwr
imp  under uniform response in assumption of design-

based approach is estimated by

b( ȳ uwr
imp )= (1− p̂) (R̂r

uwx−− ȳr),� (A1.4)

where p̂ is an estimator of the probability of response. Subtracting the bias 
estimator b( ȳ uwr

imp ) from ȳ uwr
imp , the bias-adjusted estimator of Ȳ under 

unweighted ratio imputation is derived and expressed as4

ȳ adj
imp = ȳr + R̂r

uw( x−−x−r),� (A1.5)

where x− uses full sample x-values5. 

4	� See also in Haziza and Rao (2003).
5	� No imputations for x-values; all data of x-values are actual observations.
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Appendix 2 Variance Estimation of Imputed Estimators

1. With weighted ratio imputation

Under weighted ratio imputation, V1( . ) and V2( . ) are derived and esti-
mated by υ1

wr and υ2
wr, respectively as follows (Haziza and Rao 2003)

υ1
wr =υ(q).� (A2.1)

In (A2.1), q=∑
s
wiqi, the value of qi for i∈s under weighted ratio imputation

is given by qi =
1

∑
s
wi

(q1i − ȳ wr
imp), with q1i =aiyi +(1−ai)R̂rxi + ĉai( yi − R̂rxi),

where ĉ=
∑
s
wi(1−ai)xi

∑
s
wiaixi

 and ai is an indicator, ai =1 if i∈sr , otherwise ai =0.

In addition, under weighted ratio imputation, υ2
wr is derived and 

expressed as

p̂(1− p̂) x̂ 2
s2

er
υ2

wr = x̂a ,� (A2.2)N̂

where p̂ =
∑wi
sr

∑wi
s

, x̂=∑
s
wixi, x̂a =∑

s
wiaixi, N̂=∑

s
wi, s2

er =
∑
s
wiai(yi −R̂ixi)2

∑
s
wiai

.

2. With unweighted ratio imputation

Similarly, for the case of unweighted ratio imputation, using lineariza-
tion variance estimation with the delta method, V1( . ) and V2( . ) are estimated 
by υ1

uwr and υ2
uwr, respectively as follows.

υ1
uwr =υ(q).� (A2.3)
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In (A2.3), q =∑
s
wiqi, the value of qi for i∈s under unweighted ratio impu-

tation is given by qi =
1

∑
s
wi

(q2i − ȳ uwr
imp ), with q2i =aiyi +(1 − ai)R̂r

uwxi + d̂ ai
wi

( yi − R̂r
uwxi),

where d̂ =
∑
s
wi(1−ai)xi

∑
s

aixi
.

Under unweighted ratio imputation, υ2
uwr is derived and given as

p̂(1− p̂) s2
er(1) + x̂− x̂a

2
s2

er(2) +2 x̂− x̂a
2
s2

er(3)
υ2

uwr = x̂au x̂au ,� (A2.4)N̂

where x̂au =∑
s
aixi, s2

er(1) =
∑
s
wiai( yi − R̂r

uwxi)2

∑
s

wiai
, s2

er(2) =
∑
s
wi

−1ai(yi − R̂r
uwxi)2

∑
s

wiai
,

s2
er(3) =

∑
s
ai(yi − R̂r

uwxi)2

∑
s

wiai
.

3. For bias-adjusted estimator under unweighted ratio imputation

For the bias-adjusted estimator under unweighted ratio imputation, using 
linearization variance estimation with the delta method,  V1( . ) and V2( . ) are 
derived and estimated by υ1

adj and υ2
adj (Haziza and Rao 2003), respectively 

as follows.

υ1
adj =υ(q).� (A2.5)

In (A2.5), q =∑
s
wiqi, the value of qi for i∈s under unweighted ratio impu-

tation with bias-adjusted is given by qi =
1

∑
s
wi

(q3i − ȳ adj
imp ), with

q3i = ai
∑
s
wiai

[( yi − ȳr)+ R̂r
uw(xi −x−r)]+ R̂r

uw

N̂ (xi −x−)+ 1
∑
s
aixi

ai
wi

(xi −x−r)( yi − R̂r
uwxi).

Under unweighted ratio imputation with bias-adjusted, υ2
adj is derived 

and presented as
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υ2
adj = p̂(1− p̂) N̂

∑
s
wiai

[s2
yr +(R̂r

uw)2s2
xr −2R̂r

uwsyxr +(ĥ∑
s
wiai)2s2

er(2)

+2(ĥ∑
s
wiai)(seyr − R̂r

uwsexr)],� (A2.6)

where ĥ =
(x−−x−r)
∑
s
aixi

, s2
yr =

∑
s
wiai(yi − ȳr)2

∑
s
wiai

, s2
xr =

∑
s
wiai(xi −x−r)2

∑
s
wiai

,

syxr =
∑
s
wiai(xi − x−r)(yi − ȳr)

∑
s
wiai

, s2
er(2) =

∑
s
wi

−1ai(yi − R̂r
uwxi)2

∑
s
wiai

,

seyr =
∑
s
ai(yi − R̂r

uwxi)(yi − ȳr)
∑
s
wiai

, sexr =
∑
s
ai( yi − R̂r

uwxi)(xi −x−r)
∑
s
wiai

.
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Appendix 3 Simulation results

Figure A3.1  Relative bias of the imputed estimators for six cases 
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Figure A3.1  Relative bias of the imputed estimators for six cases

(Continued)
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Figure A3.2  CV of the imputed estimators for six cases
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Figure A3.2  CV of the imputed estimators for six cases (Continued)
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Figure A3.3  Relative bias of the variance estimators for six cases
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Figure A3.3  Relative bias of the variance estimators for six cases (Continued)
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Appendix 4 Survey data for practical application

Table A4.1  Survey data obtained by the sampling survey in 2001

No.
Northern Region Central Region Southern Region Eastern Region

Cost
(NT$)

Quantity
(Unit)

Cost
(NT$)

Quantity
(Unit)

Cost
(NT$)

Quantity
(Unit)

Cost
(NT$)

Quantity
 (Unit)

1 142700 2700 280000 1200 70000 600 28000 1095
2 36000 400 450000 3500 50000 600 280000 10050
3 90000 700 110000 1000 35000 450 1032000 16200
4 10000 120 1100000 10000 15000 380 32500 200
5 7500 90 180000 1200 12000 250 22500 200
6 12500 160 70000 400 11000 200 28000 200
7 36000 350 18000 160 8000 230 130000 400
8 18000 170 48000 400 30000 600 55000 290
9 38000 1500 25000 200 100000 700 96000 400

10 190000 1100 — 160 9000 100 — 700
11 37500 350 1800 120
12 16000 200 38000 165
13 26000 200 18000 160
14 16800 200 19500 160
15 36000 350 11200 140
16 30000 150 18800 160
17 36000 400 240000 1800
18 18900 200 14000 200
19 17500 200 37500 210
20 45000 400 90000 850
21 40000 200 12000 520
22 20000 120 8500 240
23 16250 160 36000 650
24 29000 150 9500 120
25 45000 400 32000 400
26 33000 350 4500 1000
27 112000 1100 22500 475
28 10400 120 9000 175
29 30000 160 52000 620
30 24000 160

Source: Sampling survey data from Hsu et al. (2001).



Comparative �nalysis and �pplication of Imputed Estimators for Population Mean under Stratified Unequal Probability Sampling　53

REFERENCES

Al-Jararha, Jehad M., and Mazen Sulaiman, 2020, “Horvitz-Thompson Estimator Based 
on the Auxiliary Variable.” Statistics in Transition New Series 21(1): 37–53.

Chen, Sixia, and David Haziza, 2019, “Recent Developments in Dealing with Item Non–
response in Surveys: A Critical Review.” International Statistical Review 87(S1): 
S192–S218.

Cochran, William G., 1977, Sampling Techniques (3rd ed.). New York: John Wiley & 
Sons.

Fay, Robert E., 1991, “A Design-Based Perspective on Missing Data Variance.” Pp. 429–
440 in Proceedings of the 1991 Annual Research Conference, edited by Bureau of the 
Census. Washington, DC: U.S. Bureau of the Census.

Haziza, David, and Jon N. K. Rao, 2003, “Inference for Population Means under 
Unweighted Imputation for Missing Survey Data.” Survey Methodology 29: 81–90.

—, 2005, “Inference for Domains under Imputation for Missing Survey Data.” The 
Canadian Journal of Statistics 33(2): 149–161.

Hedayat, Samad, and Bikas K. Sinha, 1991, Design and Inference in Finite Population 
Sampling. New York: John Wiley & Sons.

Horvitz, Daniel G., and Donovan J. Thompson, 1952, “A Generalization of Sampling 
without Replacement from A Finite Universe.” Journal of the American Statistical 
Association 47(260): 663–685.

Hsu, Esher, Chien-Fu J. Lin, Chen-Meng Kuo, Nan-Min Wu, Hsiao-Kan Ma, Yunchang J. 
Bor, and Yu-Lan Chien, 2001, “Formulating Recycling Charges and Subsidies of 
Waste Home Appliances.” Report, No. EPA–90–HA31–03–060. Taipei: Environmen-
tal Protection Administration.

Keeble, Claire, Graham R. Law, Stuart Barber, and Paul D. Baxter, 2015, “Choosing a 
Method to Reduce Selection Bias: A Tool for Researchers.” Open Journal of Epide-
miology 5: 155–162. 

Knaub, James R., 2017, “Comparison of Model-Based to Design-Based Ratio Estima-
tors.” Paper presented at The 2017 JSM, Baltimore, Maryland, USA, August 1.

Little, Roderick J. A., 1992, “Regression with Missing X’s: A Review.” Journal of the 
American Statistical Association 87(420):1227–1237.

Little, Roderick J. A., and Donald B. Rubin, 1987, Statistical Analysis with Missing Data. 
New York: John Wiley & Sons.



54　調查研究—方法與應用/第 46期

Namboodiri, N. Krishnan, 1978, Survey Sampling and Measurement. New York: Aca-
demic Press, Inc.

Nittner, Thomas, 2003, “Missing at Random (MAR) in Nonparametric Regression—A 
Simulation Experiment.” Statistical Methods & Applications 12: 195–210. 

Rao, Jon N. K., 1966, “Alternative Estimators in PPS Sampling for Multiple Characteris-
tics.” Sankhya-: The Indian Journal of Statistics, Series A (1961–2002) 28(1): 47–60.

Rao, Jon N. K., and Jun Shao, 1992, “Jackknife Variance Estimation with Survey Data 
under Hot Deck Imputation.” Biometrika 79: 811–822.

Sampford, Michael R., 1967, “On Sampling without Replacement with Unequal Probabili-
ties of Selection.” Biometrika 54: 499–513.

Särndal, Carl-Erik, 1978, “Design-Based and Model-Based Inference in Survey Sam-
pling.” Scandinavian Journal of Statistics 5(1): 27–52.

—, 1992, “Methods for Estimating the Precision of Survey Estimates When Imputation 
Has Been Used.” Statistics Canada 18: 241–252.

Shao, Jun, and Philip Steel, 1999, “Variance Estimation for Survey Data with Composite 
Imputation and Nonnegligible Sampling Fractions.” Journal of the American Statis-
tical Association 94 (445): 254–265.

Skinner, Chris J., and Jon N. K. Rao, 2002, “Jackknife Variance Estimation for Multivari-
ate Statistics Under Hot-deck Imputation from Common Donors.” Journal of Statis-
tical Planning and Inference 102: 149–167.

Wheeler, David C., Jason E. VanHorn, and Electra D. Paskett, 2007, “A Comparison of 
Design-based and Model-based Analysis of Sample Surveys in Geography.” Techni-
cal Report No. 07–11 December 2007. Georgia: Department of Biostatistics Rollins 
School of Public Health Emory University.


