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This paper experimentally examines the effects of information on
voter turnout in the Palfrey-Rosenthal pivotal voter (PR) model. In
particular, I compare two different degrees of information revelation:
one is that voters know each party’s support base (complete informa-
tion scenario), and the other is that voters know one party’s support
base but are limited to knowing the probability of the support base
of the other party (partial information scenario). There are two main
findings. First, in the partial information scenario with a revelation
of a weak support base, subjects tend to have a higher belief in be-
ing pivotal than theory predicts, which causes their turnout rate to
be not lower than those in the corresponding complete information
scenario. Second, in the complete information scenario, turnout of
the subjects of the frontrunner party is significantly higher than the
subjects’ best response to their pivotal belief, which can be explained
by a PR model incorporating the generalized disappointment aver-
sion effect.
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1 Introduction

Although voter turnout is a core issue in political economy, there is little con-
sensus on how best to understand it. Arguably the most controversial theory
in studying voter turnout is Downs (1957)’s rational choice theory, which
was initially formulated as a decision theoretic model, and was modified in
order to serve as a pivotal voter model. Pivotal voter models claim that vot-
ers decide whether or not to vote based on their chances of being pivotal.
Although the real-world probability of a single vote being pivotal in a mass
election is very low, pivotal voter models still provide useful guidance. For
example, the results from Levine and Palfrey (2007)’s experimental examina-
tion of the Palfrey and Rosenthal (1985) pivotal voter model clearly identify
and support the three main equilibrium static effects of size, competition,
and the underdog in voter participation games.

Furthermore, and perhaps more importantly, pivotal voter models pro-
vide useful guidance regarding how information about outcomes affects vot-
ing behavior (Agranov et al., 2018). Researchers using pivotal voter models
to study the impacts of information revealed by polls have reported higher
overall turnout rates when pollsters are free to inform electorates of infor-
mation about support levels for individual candidates (especially compared
to scenarios where polls are prohibited), and have found evidence indicating
that polls exert different effects in close versus widely-divided elections (Klor
and Winter, 2007; Grofer and Schram, 2010; see Agranov et al., 2018 for
an overview).

The present paper studies the effects of different degrees of information
revelation about outcomes on voter turnout in the Palfrey-Rosenthal pivotal
voter (PR) model. Specifically, this paper considers a two-party election,
with each party consisting of two types of voters: base partisans (those who
always vote for their preferred party and therefore can represent the base of
support for the party) and passive partisans (those who either vote for their
preferred party or abstain). Since base partisans always turn out to vote, in
the following, “turnout” refers to turnout of passive partisans. It is assumed
that there is a 7; probability that an i party has a large number of base
partisans (represented by Ri|) and a 1 — 7j probability that this i party has
a small number of base partisans (represented by Ris). According to the
PR model, a strategic voter (i.e., the passive partisan in this paper) decides
whether or not to vote depending on her voting cost and her probability of
casting a pivotal vote in an election. A passive partisan’s belief regarding her
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probability of being pivotal depends on what she has learned about the base
partisans, or support bases, of the two parties. Hence, by comparing voter
turnout under different scenarios of information revelation about support
bases, we can study how different degrees of information revelation affect
voter turnout.

In particular, two types of scenarios are considered. One is the partial
information scenario, defined as the scenario where passive partisans learn
RiL or Risof thei party but only learn 7j of the j party. The other is the
complete information scenario, defined as the scenario where passive parti-
sans learn R or Ris of the i party as well as R or Rjs of the j party. In
other words, in the partial information scenario, one party reveals complete
information about its support base to voters but the other party only reveals
partial information (i.e., the probability). By contrast, in the complete infor-
mation scenario, two parties both reveal complete information about their
respective support bases to voters.

This paper uses laboratory experiments to study the effects of informa-
tion revelation on voter turnout and has two main findings. First, theory
predicts that subjects’ voting propensity would be higher in the complete
information scenario than in the partial information scenario, given the rev-
elation of close support bases of two parties. The experimental data, how-
ever, show that revealing a party’s weak support base in the partial infor-
mation scenario still made subjects believe that they had a high chance to
cast a pivotal vote, and hence still encouraged them to vote. Second, when
subjects were informed of being in an advantageous position in the com-
plete information scenario, their turnout became significantly higher than
the best response to their pivotal belief. This behavior can be explained by
the PR model incorporating the generalized disappointment aversion effect.
That is, the effect of disappointment aversion encouraged the subjects of the
frontrunner party to vote, leading to a high turnout rate, even if the subjects
knew that their probability of being pivotal was low.

In practice, there are a number of methods that a party can use to in-
form its passive partisans of information about the support base and hence
encourage them to vote. One is to conduct polls and announce poll results
before elections. Since polls usually reveal distributions of electorate pref-
erences, this method corresponds to partial information revelation in our
model. Compared with polls, conducting campaigns such as rallies provides
more certainty in the form of the actual base of support for a party, and
hence more corresponds to complete information revelation to voters in our
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model. This is because supporters have to pay time or money to partici-
pate in rallies, while through polls a party’s supporters show their support
without paying costs (which can be viewed as cheap talk).

There are several real-world examples about complete information rev-
elation. Ralph Nader organized a series of campaign rallies in an attempt
to get his supporters to the polls so as to achieve the minimum 5% vote to
secure public campaign financing for his Green Party in 2004. The pur-
pose of the rallies was to convince voters that he was capable of achieving
that percentage (Morton, 2006). Another example is the 2004 presidential
campaign in Taiwan, which Mattlin (2004) describes as a “virtual arms race
of mass rallies” (p. 167). To support the Chen Shui-bian campaign, the
Democratic Progressive Party and Taiwan Solidarity Union organized a hu-
man chain around a theme of “protecting Taiwan.” An estimated 2 million
people took part in forming the chain, which ran 486 kilometers from the
island’s northernmost point to its southern tip. According to Clark (2004),
“The huge turnout certainly proved the rally to be a tremendous success in
igniting Pan-Green [multiple parties with similar platforms] supporters” (p.
32).

Previous experimental studies on similar topics, such as Klor and Winter
(2007) and Grofer and Schram (2010), always compare the cases with and
without polls (i.e., no information and partial information scenarios). Agra-
nov et al. (2018) compare different kinds of polls: regular polls that reveal
the correct distribution of electorate preferences, and lab polls reported by
subjects themselves. The former provides more accurate information about
the electorate preferences than the latter does, but still, both of them pro-
vide partial information of each party. Levine and Palfrey (2007) examine
the effect of party size on voter turnout, which is similar to the complete
information scenario considered in the present paper, but that paper does
not consider the partial information scenario. Compared with them, the
present paper compares the partial and complete information scenarios, and
hence can provide more comprehensive advice for parties’ election strategies
(Section 5).

The rest of this paper is organized as follows. In Section 2, I describe
a model, based on the PR model, that shows how partial or complete in-
formation revelation affects voter turnout. The experimental design and
hypotheses for the study are introduced in Section 3, and experimental re-
sults are presented in Section 4. The last section concludes and provides
suggestions.
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2  The model

2.1 The two-party race

The model used in this study is based on the turnout model developed and
refined by Palfrey and Rosenthal (1985) and Levine and Palfrey (2007), in
which voters are described as having and reacting to privately known voting
costs, which more accurately reflect real world characteristics. There are two
parties, Ty and T, with N; supporters of T; and N, supporters of T,; that
is, supporters belonging to T; choose either to vote for T; or to abstain,
where i € {1,2}. Supporters are categorized as either base partisans or
passive partisans. It is assumed that base partisans have zero voting costs, and
therefore voting can be considered to be a dominant strategy. Accordingly, a
party’s base partisans can be viewed as this party’s support base. Voting costs
for passive partisan | are denoted as Cj and are set at a value greater than
zero for any j. Furthermore, Cj is independently drawn from a common
density function f(C) and is privately known by | before | decides whether
or not to vote. The sizes of N; and N, and the density function of the cost
distribution f(C) are common knowledge; f(C) is assumed to be positive
everywhere on its support.

There is a probability 7; that Ty has a large number of base partisans
(represented by R;| ) and a probability 1 — 77, that T; has a small number of
base partisans (represented by R;s). The respective large and small numbers
of base partisans for T, are represented by R, (probability 7,) and Rys
(probability 1 — ;). The 7, and 7, probabilities are independent. Each
party knows its actual number of base partisans (i.e., support base), but if
a party T; only reveals its 7j to voters, Ti’s support base will be a random
variable to voters; that is, voters only have partial information of T;. By
contrast, if T; reveals its actual support base to voters, each voter will know
the actual number of Tj’s base partisans (i.e., either R or Ris); that is,
voters have complete information of T;. A passive partisan decides whether
or not to vote for her party based on what she knows about the support bases
of the two parties, which will be discussed in detail later.

Passive partisan | must incur voting cost Cj in order to cast her vote.
If Ty wins, all T; partisans receive reward H and all T, partisans receive
reward L < H; the opposite occurs if T, wins. These rewards are common
knowledge. In this study it is assumed that all passive partisans in the same
party use the same decision rule in equilibrium. According to Palfrey and
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Rosenthal (1985), a quasi-symmetric voting equilibrium consists of a pair of
critical points (€, €;) such that any passive partisan ] in T; votes if and only
if ¢; < €, and any passive partisan j in T, votes if and only if ¢; < C,. A
quasi-symmetric equilibrium implies a (P;, P,) aggregate voting probability
for passive partisans in each party given by

b =/ f(©dc = F(&), 1)
0

b = / f(©dc = F(&). @)
0

Since (€, €,) is an equilibrium, for any interior solution a passive partisan
with a voting cost equal to (€;, €;) must feel indifferent about voting or
abstaining. As a result,

H-L,
C = 5 i, 3)
H-L,
C = > Gk, (4)

where ; (§,) is the probability that a vote cast by a passive partisan in T, (T,)
will be pivotal in making or breaking a tie given the equilibrium voting
strategies of all other voters in both parties.

The proposed model considers three types of scenarios: (1) the complete
information scenario, defined as the scenario where voters have complete
information of each party, (2) the scenario where voters only have partial
information of each party, and (3) the partial information scenario, defined
as the scenario where voters have complete information of one party and
partial information of the other party. The primary study parameter is how
much information passive partisans have about the numbers of base par-
tisans in the two parties. Let R; and R, represent the realized numbers
of Ty and T, base partisans, respectively. In the complete information sce-
nario, R € {Ri, Ris} wherei € {1, 2}; in the second scenario described
above, Rj = R, = {J; in the partial information scenario, if one party,
say Ty, only reveals its 71, Ry is defined as an empty set (i.e., Ry = )
and R, € {RyL, Ris}. The equilibrium values of (€, &), (P1, P2), and
(G, §2) depend on the actions of the two parties, (771, 72), (RiL, Ris), and
(RoL, Rys). In the following section, I will characterize voter turnout equi-
libria under different scenarios.
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2.2 Voter turnout equilibria

Complete information scenario. The probability that K passive partisans
turn out to vote when there are N passive partisans and each passive partisan
has a probability p of voting is denoted as Py (K|p, n). Note that p is not
well-defined when N = 0 because there are no passive partisans. In such
cases, Pp(KIp,n) = 1 and ), Pp(k|p,n) = 1, which ensures that the
formulas in Section 2 are well-defined. Let (C}, C3), (Pf, P5), and (q}, O5)
denote the equilibrium values of (€, €;), (P1, P2), and (G, §,), respec-
tively. In the complete information scenario, voters have precise knowledge
of the numbers of base partisans in the two parties (R; and R;). Hence, the
probability that a passive partisan in party T, or T, will be pivotal in making
or breaking a tie is expressed as

min{N;—1,Nz}

= >  {Po(k=RiIp}. N =R —1)

k=max{R;,R,}
xPp (k= R, N, — Ry) }
min{N]—l,Nz—l}

+ Z {Pp(k—RiIp}f, N, — R — 1)

k=r
xPp(k+1—ReIp;. N — Ry)}, (5)
min{Nj,Ny—1}
%= >  {Po(k—Rp;, N — R —1)
k=max{R;,R,}

XPp (k— Rllp;k, N] — R])}
min{N]—l,Nz—l}
+ Y {Pok—Rap Ny — Ry — 1)
k=|’2

XPp(k+1—R1|pT,N1—R1)}, (6)

where 1 = max{R;, Ry} — 1 if R < R;j, otherwise Ij = max{R;, R,}.
Equations (1)-(6) can be used to solve (C}, C3), (P}, p5) and (0, 0f).

Scenario where voters have partial information of each party. In this
scenario, voters are limited in their knowledge to the probabilities of large
numbers of base partisans in their own and the other party (7; and ;).
Assume that there are N voters, with i base partisans with probability 7
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and I's base partisans with probability 1 — 7, and with each passive partisan
having a probability p of voting in an election. The probability of a precise

K number of voters casting their ballots can be expressed as

Pn (KIp, m,n,re,rs) =7 x Pp(K=rp[p,n—rp)
+ (1 —=m) x Py(k=rglp,n—rg).

Given that T; has Ry base partisans with probability 7; and R;s base par-
tisans with probability 1 — 7y, and that T, has R, base partisans with
probability 77, and Rys base partisans with probability 1 — 1,, equations (5)
and (6) become

min{lel,Nz}

ql = Z {PN (klﬁlvnlv Nl_lv RlLv RIS)
k=0
X PN (k|f)27 T2, N27 RZL» RZS)}
min{Nl—l,Nz—l}
+ Z {Pn (KIP1, 1, Np — 1, Ry, Ris)
k=0

X PN (k + llera T, N2a R2L7 RZS)} ) (7)

min{Nl,Nz—l}
G = Z {Pn (KIP2, 2, N2 — 1, Ry, Ros)

k=0
XPN (k|ﬁ177(17 Nl? R]Lv RIS)}
min{lel,szl}
+ Z {Pn (KIP2, 2, Ny — 1, Ryt Res)
k=0
XPN (k+1|ﬁlanlavaRlLv RIS)}» (8)

where (Py, P,) and (G, G) are the equilibrium values of (P, p2) and (qy,
§,), respectively.

Partial information scenario. In this scenario, voters know the precise
number of base partisans in one party, and are limited to knowing the prob-
ability of the other party’s support base. With no loss of generality, assume
that voters know the actual value of R; (i.e., R = R;L or R, = R;g) but
they do not know the actual value of R; they only know that there is a
probability 7, that R, = Ry and a probability 1 — 7, that R, = Rys.
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Given 1, and Ry, equations (5) and (6) become

min{lel,Nz}

q = Z [Pp (k= Rilp{*, N, — R, — 1)
k:R]

x Py (k| P*, 2, Na, Rors st)}
min{lel,szl}

+ > {Po(k—Rip{*. N, = R —1)

k=R
X PN (k+ 1|p**7 T, NZ? RZLv RZS)} ) (9)
min{Nl,szl}
" = Z {Pn (KIPs*, 2, N — 1, Ryt Rus)
k=R

XPp (k— Rllpik*, N1 — Rl)}
min{lel,szl}

+ Z {Pn (KIPS*, 2, N2 — 1, Ry, Rys)
k=max{R;—1,0}

xPy (k41— R|pf*, N — R)}, (10)

where (p*, p3*) and (Qj*, g;*) respectively represent the (P, f,) and (q,
§) equilibrium values.

3 Experimental design and hypotheses

3.1 Experimental design

In the experiment, all parameters described in the preceding section are
controlled for. Following the lead of Levine and Palfrey (2007), payoffs
are established at L = 1 and H = 21, and the voting cost distribution
f is uniform, ranging from 0 to 11. Experimental parameters are set as
N =N, =4,7,=06,m1,=04 R =R =3,and Rs= Ris= 1.
The reasons for choosing these parameter values are as follows. The pur-
pose of this paper is to investigate the impacts of information using a pivotal
model in which turnout is affected by voters™ beliefs of being pivotal. There-
fore, there are advantages to using an environment in which voters have
correct beliefs. such an environment is easier to achieve when the voter pool
is small (i.e., N; = N, = 4). In addition, a large variance of the actual num-
bers of base partisans (i.e., R = 3, Ris = 1) is more helpful for identifying
the impacts of different degrees of information revelation.
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The experiment consists of four treatments designed to examine voter
response to different information-revelation scenarios. The two primary
roles are base and passive partisan. Human subjects play the role of pas-
sive partisans deciding whether or not to vote, while client computers play
the role of base partisans who always vote. Furthermore, in the experiment
there are two types of groups, an A group representing the T; party and a
B group representing the T, party, leading to Na = Ng = 4, ma = 0.6,
g = 0.4, Ra. = RgL = 3, and Ras = Rgs = 1. The timing for each
period of an experimental session is established as follows:

States and Partisanship. There are equal numbers of A and B groups.
At the start of each period, all A and B groups are randomly paired, with
each subject randomly assigned to an A or B group; in addition, the server
computer randomly determines the numbers of base partisans of the A and
B groups. Note that, given a period of a session, each A group has the same
number of base partisans, and so does each B group. For example, if in one
period the server computer determines that an A group has 1 base partisan
and a B group has 3 base partisans, then in that period, each A group has 1
base partisan (and 3 passive partisans) and each B group has 3 base partisans
(and 1 passive partisan). If subjecti is assigned to an A group in that period,
then subject i and 2 other subjects serve as that A group’s passive partisans
in that period. As mentioned earlier, client computers play the role of base
partisans.

Complete or Partial Information Revelation. Depending on the treat-
ment, subjects are provided with different information on the numbers of
base partisans in the A and B groups. The four treatments are as follows:

o The CC rreatment. Subjects are informed of the actual numbers of base
partisans in the Aand B groups. This treatment represents the complete
information scenario.

o The CP treatment. Subjects are told the actual number of base partisans
in the A groups but not told that number in the B groups, even though
it has been determined. Subject knowledge is limited to a 0.4 probability
of the B groups having 3 base partisans and a 0.6 probability of the B
groups having 1 base partisan.

e The PC treatment. This is similar to the CP treatment; subjects are
informed of a 0.6 probability of the A groups having 3 base partisans
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and a 0.4 probability of the A groups having 1 base partisan, while
learning the actual number of base partisans of the B groups. Both the
PC and CP treatments represent the partial information scenario.

o The PP treatment. Subjects are only informed of the probabilities of
support bases for the A and B groups. This treatment represents the
scenario where voters have partial information of each party.

Voting Decisions and Beliefs.  After receiving information regarding base
partisans, subjects decide whether or not to vote for their respective parties.
Voting entails a cost that is independently drawn from the uniform distribu-
tion and is known by each subject individually. Neutral language is used in
the experiment instructions (see Appendix A). Following Levine and Palfrey
(2007), the experiment lets subjects choose between “X” (casting a vote) and
“Y” (abstaining). In terms of voting costs, a subject who chooses Y is given
a “Y bonus” that is added to that subject’s earning, while a subject choosing
X does not receive a “Y bonus”, thereby treating voting costs as opportunity
costs. Y bonuses are randomly drawn (independently for each subject) from
the uniform distribution between 0 and 11, in integer increments, for each
period; subjects are only informed of their own Y bonuses. After making
voting decisions, subjects are asked to report their beliefs about the numbers
of the votes for their group and the competing group. The data are used to
examine subjects’ beliefs regarding whether or not their voting decisions are
pivotal.!

Payoffs. Each group’s votes are counted once all decision and belief data
are gathered. Recall that there are several pairs of A and B groups. In each
pair, the group receiving the majority of votes wins, and each subject in that

In order to elicit subjects’ beliefs regarding whether or not their voting decisions are
pivotal, I also followed the method proposed by Dufly and Tavits (2008) to ask subjects
to make guesses as to the probabilities of their votes being pivotal, and paid the subjects
based on the method proposed by Karni (2009). However, the experimental data show that
lots of subjects were confused with the meaning of the pivotal probability. Some of them
were unable to distinguish between the pivotal probability and the winning probability. In
addition, subjects’ belief about the numbers of the votes for their group and the competing
group and subjects’ belief about the probability of their votes being pivotal were found to
be statistically uncorrelated, which does not make sense. Hence, data about subjects’ pivotal

probability beliefs are not considered in this paper.
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group receives 21 points; subjects in the other group receive 1 point each.
In cases of ties, each subject receives 11 points. Subjects are paid based on
the accuracy of their beliefs — a bonus of 1 point for correctly guessing the
numbers of the votes for their group and the competing group.

Notice that from subjects’ points of view, each of the CC, CP, and PC
treatments has four cases and the PP treatment has two cases, as shown in
Table2. The description of each case of each treatment is shown in Table
6 in Appendix B. Take the PP treatment as an example. If subject i is
assigned to the PP treatment, in each period he will face one of the two
cases as follows: (1) the case where mp = 0.6, mg = 0.4, and subject i
is in an A group (denoted as Case (0.6, 0.4; A) in Table2); (2) the case
where o = 0.6, mg = 0.4, and subject i is in a B group (denoted as Case
(0.6, 0.4; B) in Table2). Therefore, to make turnout rates of different cases
comparable, each of the CC, CP, and PC treatments is designed to have
40 periods and the PP treatment is designed to have 20 periods, with each
case occurring with equal probability. By doing so, given a treatment, each
case of the treatment will appear around 10 periods in the experiment.

3.2 Hypotheses

Denote DE(RA, Rg), p;(RA, mB), pg(ﬂA, Rg), and pg(ﬂA, Tg) as the
equilibrium turnout probabilities for the S group in the CC, CP, PC, and
PP treatments, respectively, where S € {A, B}. With the parameter val-
ues chosen for the experiment, Table 1 shows the Nash equilibrium turnout
probabilities (denoted as p*) for the A and B groups in each treatment,
calculated by Section 2. The equilibrium is unique for all the treatments.”

To study the effects of information revelation on voting decisions, I fo-
cus on the following four hypotheses, all derived from Table 1. Hypothesis
1 is about the underdog effect, which is one of the important controver-
sies in the literature on voting behavior. Pivotal voter models predict the
underdog effect that turnout of the minority group is higher than that of
the majority one, which is supported by the experimental data in Levine
and Palfrey (2007); however, Duffy and Tavits (2008), GroBer and Schram
(2010), Kartal (2015), and Agranov et al. (2018) all find the opposite resul.
To test the underdog effect, I analyze voting behavior in the CC treatment,
where support base of each group is revealed to voters.

2The numerical grid searches are used to show that only one equilibrium exists for each

treatment.
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Table 1: Parameter values for the experiment and predictions

Treatment Ra Rs TA B P Pg
cC 1 1 - - 0.573 0.573
3 1 - - 0.407 0.465
1 3 - - 0.465 0.407
3 3 - - 0.909 0.909
CP 1 - - 0.4 0.525 0.537
3 - - 0.4 0.762 0.659
PC — 1 0.6 - 0.500 0.500
- 3 0.6 - 0.787 0.867
PP - - 0.6 0.4 0.694 0.661

Note: The group size is four in each treatment, i.e., NA = Np = 4.
Let Se {A, B}. Rs: the number of base partisans of group S. ws(1 —
ms): the probability that Rs = 3(Rs = 1). p&: the equilibrium
turnout probability for group S.

Hypothesis 1 (H1). In each pair of Aand B groups in the CC treatment,
turnout of the group with a weak support base is greater than turnout of
the group with a strong support base. That is, pa(1,3) > pg(1,3) and
P53, 1) > pa(3, 1).

Hypotheses 2 to 4 focus on how different degrees of information reve-
lation affect voter turnout. Compared with partial information revelation,
complete information revelation provides complete certainty of the support
base, thus providing greater certainty of an election outcome, resulting in
a higher or lower propensity to cast a vote, depending on the closeness
of competition between A and B groups. Hypotheses 2 and 3 are about
the comparisons between the CC treatment and the CP or PC treatment.
Specifically, Hypothesis 2 is for the situation where the actual numbers of
base partisans of the two groups are close; Hypothesis 3 is for the situation
where the actual number of base partisans of one group is large and that of
the other group is small. Hypothesis 4 is about the comparisons between
the PP and CP treatments and between the PP and PC treatments.

Hypothesis 2 (H2). Inany Aand B group pair, given that the two groups
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have close support bases, passive partisans in both groups will have a greater
propensity to vote in the CC treatment than in the CP or PC treatment.
This is because revealing the closeness of the election makes each passive
partisan of each group to perceive a high probability of holding a pivotal
vote. That is, pg(r,r) > pg(0.6,r), ps(r,r) > pg(r,0.4), where S €
{A,B}andr € {1, 3}.

Hypothesis 3 (H3). In any pair of A and B groups, given that the two
groups have landslide support bases, passive partisans in both groups will
have a greater propensity to vote in the CP or PC treatment than in the
CC treatment. This is because revealing a landslide race makes each passive
partisan of each group to perceive a low probability of holding a pivotal
vote. That is, p&(r.f) < p&(0.6,1), and p&(r,f) < p&(r, 0.4), where
Se{A B} re{1,3},f € {1,3},andr #F.

Hypothesis 4 (H4). In any pair of A and B groups, given that the com-
peting group, say group B, reveals partial information about its support base,
if group A chooses to reveal partial information as well, turnout of group A
will be between the following two turnout rates. One is the turnout rate of
group A revealing complete information and showing a weak support base;
the other is the turnout rate of group A revealing complete information and
showing a strong support base. That is, p4(0.6, 0.4) is between pj(1, 0.4)
and P,R(3, 0.4); P5 (0.6, 0.4) is between pg (0.6, 1) and pg(0.6, 3).

3.3 Procedures

A total of 15 experimental sessions were held in the Missouri Social Science
Experimental Laboratory (MISSEL) of Washington University in St. Louis,
8 in the winter of 2012 and 7 in the spring of 2013. Each session lasted ap-
proximately 2.5 hours. A total of 110 study subjects were recruited through
the MISSEL subject pool. Of these, 26 were randomly assigned to the CC
treatment, 28 were randomly assigned to the CP treatment, 30 were ran-
domly assigned to the PC treatment, and 26 were randomly assigned to the
PP treatment. Each subject only took part in one session. The instructions
varied for each treatment.

In each period of a session of a treatment, there were four possible elec-
tions. Election 1: 1 client computer and 3 subjects in each A and B group;
Election 2: 1 client computer and 3 subjects in each A group, and 3 client
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computers and 1 subject in each B group; Election 3: 1 client computer and
3 subjects in each B group, and 3 client computers and 1 subject in each A
group; Election 4: 3 client computers and 1 subject in each A and B group.
The instructions told subjects that given a period, one of the four elections
would occur. Hence, every subject sitting in the lab faced the same election
in the period (but subjects did not know which election would occur before
making voting decisions unless they were in the CC treatment).

To make each subject face the same election in a period of a session, I
used a round-table method to group subjects. Suppose that there were 2N
subjects in a session, where 2N was even and not less than 6. In each period,
the server computer randomly assigned N subjects to be A group members
and N subjects to be B group members, and then gave each Sgroup member
a number, from 15 to Ng, where S € {A, B}. Then, for a subject with the
number ig, when Election 1 occurred, or Election 2 occurred and subject
is was an A group member, or Election 3 occurred and subject is was a
B group member, subject i s would be grouped with a client computer and
other two subjects with the numbers (i + 1)sand (i +2)s. If (i + 1)sand
(i + 2)s were larger than Ng, they were replaced by the numbers 15 and 2s.
By contrast, subject i s would be grouped with three client computers when
the other elections occurred.? Lets call it the itsh group. Then, if subject is
was assigned to be an A group member (i.c., S= A), the i group would be
randomly paired with a competing B group, and vice versa. After making
voting decisions, if the itpt' group had fewer, equal, or more votes than its
competing group, subject is earned 1, 11, or 21 points, respectively. With
the assumption in Section 2 that all passive partisans in the same party use
the same decision rule in equilibrium, the round-table method made the
experiment and the theory entirely consistent.”

Subjects were paid US$5 for showing up on time and listening to the in-
structions, after which they were requested to respond to control questions.
The experiment began after the experimenter answered subjects’ questions.
Subjects interacted via a computer network in the laboratory, with work sta-
tion partitions ensuring anonymity. Experiments were conducted using the

3That is, when Election 2 occurred and subject i g was a B group member, or Election 3
occurred and subject i was an A group member, or Election 4 occurred, subject i g would
be grouped with three client computers.

4For simplicity, the instructions did not show the round-table method to subjects. But

with the assumption of the theory used in the present study, this should not cause a problem.
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z-Tree program developed by Fischbacher (2007). Subjects earned an aver-
age of US$35, including the show-up fee. The exchange rate was 25 points
to US$1.

4 Results

4.1 Hypotheses testing

The analysis of results is carried out using subjects’ turnout rates observed in
the experiments. Table2 displays for each case the Nash equilibrium turnout
rate (denoted as p*) and the observed turnout rate (denoted as P). Note that
for the CC treatment, the experimental data from the A and B groups are
combined for each case since the A and B groups are identical in each case
of the CC treatment. That is, Pa(1,1) = Pr(1, 1), Pa(3,3) = Ps(3, 3),
Pa(l,3) = Pg(3,1) and Pa(3,1) = Pg(l,3). To test the relationship
between P and p* for each case, I use each subject’s average turnout rate as
an observation to conduct Wilcoxon signed-rank tests. Since each subject
only participated in one case of one treatment for around 10 periods, the
sample size is not that large. I, therefore, perform my tests at the 0.05 critical
level. The test results show that p is significantly different from p*, witha p-
value below 0.05, in one third of the cases. Specifically, they are Pg(1, 0.4),
Ps(3,0.4), Pa(0.6, 1), Pg(0.6, 1), Pa(0.6, 3), and Pa(3, 1) (and so does
Pe (1, 3)).

To see if the hypotheses are supported by the experimental data, the ob-
served turnout rate shown in Table2 is compared with each other for each
hypothesis. Specifically, H1 predicts that, in the CC treatment, or the com-
plete information scenario, turnout of the group with a weak support base is
greater than turnout of the group with a strong support base. However, in-
stead of being supported, the data show the opposite: Pg(3, 1) < Pa(3, 1)
(and so does Pa(l,3) < Ps(l,3)), implying that the under dog effect
did not occur in my experiment. This result is consistent with Duffy and
Tavits (2008), Grofer and Schram (2010), Kartal (2015), and Agranov et
al. (2018).

H2 predicts that when competition is close, both A and B groups re-
vealing complete information about their support bases will lead to higher
turnout than only one of them revealing it; that is, turnout in the com-
plete information scenario is higher than that in the partial information sce-
nario. However, the predictions that p§(1, 0.4) < pg(1, 1), pa(0.6,1) <
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Table 2: Turnout rates — comparison of theory and data
Treatment Case Ra Re ma mB Pj PA P Ps
CC(n=26) (1,1:A) 1 1 - — 05730635 - -
or(1,1;B) 1 1 — — —  — 0573 0.635
G.1: A) 3 01 — - 0407 0659 - -
or(1,3;B) 1 3 - - - - 0.407 0.659
(1,3: A 1 3 — — 0465 0402 - -
or(31;B) 3 1 - — —  — 0465 0.402
(3,3; A 3 3 - - 0909 0870 - -
or(3,3B) 3 3 - - - - 0,909 0.870
CP(N=28) (1,04:A) 1 — — 04 0525 0554 — -
(1,0.4; B) 1 - - 04 - - 0.537 0.677
(3,0.4; A 3 - - 04 0762 0794 - -
(3,04:B) 3 — — 04 —  — 0.5 0533
PC(n=30) (0.6,1:A) — 1 06 — 0500 0661 —  —
(0.6, 1; B) - 1 06 - - - 0.500 0.634
0.6, 3; A) - 3 06 - 0.787 0.609 - -
(0.6, 3; B) - 3 06 - - - 0.867 0.746
PP(N=26) (0.6,04;A) — — 06 04 0.694 0735 —  —
0.6,04,B) — — 06 04 —  — 0661 0.692

Note: Let S € {A, B}. Rs: the number of base partisans of group S. ms
(1 — mg): the probability that Rs = 3(Rs = 1). pg&: the equilibrium turnout
probability for group S. Ps: the observed turnout rate for group S. In addition,
Na = Ng = 4, meaning the group size of four in each treatment.
From subjects” points of view, each of the CC, CP, and PC treatments has four

cases and the PP treatment has two cases. For example, if subject i is assigned

to the PP treatment, in each period he will face one of the following two cases:
(1) Case (0.6, 0.4; A): the case where 1o = 0.6, g = 0.4, and subject i is
in an A group; (2) Case (0.6, 0.4; B): the case where mpo = 0.6, g = 0.4,
and subject i is in a B group. The description of each case of each treatment is

shown in Table 6 in Appendix B.

pA(l, 1), and p§(0.6,1) < pg(1, 1) are not supported by the data. This is
because Pg(1, 0.4), Pa(0.6, 1), and Pg(0.6, 1) are significantly higher than
the corresponding theoretical predictions.
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Table 3: Failure of support for the hypotheses

Theoretical Experimental
Hypothesis Prediction Data Cause
HI1 PAG, D < pgBB. 1) PaB, 1> ps3,1)  Pa(3, 1) and Pg(l, 3) are
and and respectively significantly
pE(l, 3) < p’;(l, 3)  pp(1,3) > pa(1,3)  higher than p’;(3, 1) and
pg (1, 3)
H2 pE(l, 0.4) < pE(l, 1) pp(1,0.4) > pp(1,1) pPp(l,0.4) is significantly

higher than pE(l, 0.4)
p*A(O.6, 1) < pZ(l, 1) Ppa0.6,1) > Pa(l,1) Pa(0.6, 1) is significantly

higher than p2(0.6, 1)
pE(O.(S, 1) < pE(l, 1) pp(0.6,1) ~ pg(1,1) Pp(0.6, 1) is significantly

higher than pE (0.6, 1)

H3 pZ(S, 1) < p2(0.6, 1) Pa@3.1) =~ pa(0.6,1) Pa(3, 1) is significantly
higher than pZ(3, 1)

H3 predicts that for a landslide election where one group has a weak
support base and the other has a strong support base, both A and B groups
revealing complete information about their support bases will lead to lower
turnout than only one of them revealing it; i.c., turnout in the complete
information scenario is lower than that in the partial information scenario.
But the prediction that p3(3, 1) < pa(0.6, 1) is not supported by the data,
and this is because Pa(3, 1) is significantly higher than the theoretical pre-
diction pR(3, 1).

Table 3 summarizes the comparisons of the turnout rates for H1 to H3
that are not supported by the experimental data. In sum, the differences
between the observed and theoretical turnout rates cause the failure of sup-
port for hypotheses H1 to H3, especially the unexpectedly high values of
Pa(3, 1), Ps(l,3), Ps(l,0.4), Pa(0.6,1), and Pg(0.6,1). By contrast,
comparisons of turnout rates for H4 are supported by the experimental data.
Result 1 summarizes section 4.1.

Result 1. [n the complete information scenario, subjects in the group with
a strong support base had a unexpectedly high turnout, causing the failure of
support for the underdog effect hypothesis (H1) and the hypothesis about the
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information-revelation effect for a landslide election (H3). In the partial in-
Jformation scenario with a revelation of a weak support base, subjects’ turnout
was unexpectedly high and not lower than that in the corresponding complete
information scenario, causing the failure of support for the hypothesis about the
information-revelation effect for a close election (H2).

4.2 Response to information

In order to explore the unexpectedly high turnout in the experiment, I inves-
tigate subjects’ beliefs of being pivotal in each case, since it is assumed that
the propensity to vote increases with voters’ beliefs of being pivotal. Recall
that in the experiment, subjects were asked to report their beliefs about the
numbers of the votes for their own group and the competing group. The
data can be used to calculate subjects” guesses regarding the lead of their own
group, and subjects’ guess leads equal to 0 or —1 can be viewed as subjects’
beliefs of being pivotal. Figures1-4 compare the frequency distribution of
subjects” guess leads with the theoretical distribution for each case defined
in Table2. In Figures1-4, the dots corresponding to “Guess Lead of Own
Group = —1” and “Guess Lead of Own Group = 0” represent the theo-
retical probability for a vote of being pivotal (denoted as b*), and the cor-
responding bars represent the observed percentage of subjects who believed
that their votes would be pivotal (denoted as b).

A comparison between Table2 with Figures 1-4 shows that for any case
where the observed turnout rate p is higher than the theoretical prediction
p* (shown in Table2), the b is higher than b* in that case (shown in Figures
1-4), and the opposite holds as well.> In particular, Figures2 and 3 both
show that in the partial information scenario (CP and PC treatments), b
was much higher than b* when subjects observed a weak support base (i.e.,
Ra =1o0r Rg = 1), while b was a little lower but close to b* when subjects
observed a strong support base (i.e., Ra = 3 or Rg = 3).

To further explore the relationship between subjects’ beliefs of being
pivotal and their voting strategies, I conduct a regression analysis. The re-
gression results, presented in Appendix C, show that both higher beliefs of
being pivotal and lower voting costs both significantly increased subjects

5There are only two exceptions: one is Pa(3,0.4) > p*A(3, 0.4) but BA(S, 0.4) <
b7 (3, 0.4), and the other is Pg (0.6, 0.4) > pg (0.6, 0.4) but 63(0.6, 0.4) < b5(0.6,0.4).
The differences, however, are very small — they are only 0.032 and 0.031, respectively.
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CC treatment, Average of Periods 1-40
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Figure 1: Distributions of subjects’ guess leads of their own group in the CC
treatment

propensity to vote.® These results are consistent with the literature, imply-
ing that subjects followed the main ideas of the Palfrey-Rosenthal pivotal
voter model.” More importantly, the significantly positive effect of the piv-
otal belief on turnout helps explain the failure of support for H2. That is,
large 65(0.6, 1) and 65(1, 0.4), S € {A, B}, imply that when subjects ob-
served a weak support base of a group in the partial information scenario,
they tended to have higher beliefs of being pivotal and thus became more
willing to vote, leading to high Ps(0.6, 1) and Ps(1,0.4), S € {A, B}.8

®Another interesting finding from the regression analysis is that subjects’ beliefs did not
become more accurate over time, implying no learning during the course of the experiment.
Details for this finding are presented in Table 8 in Appendix C.

7In addition to the regression results, an examination of subjects cutpoint rules also
shows that subjects followed consistent cutpoint rules to make voting decisions as the pivotal
voter model predicts. The result is presented in Appendix D.

81tis interesting to see that the reason for high BA(I, 0.4) and BB (0.6, 1) is different from
that for high 6A(0.6, 1) and 65 (1, 0.4). In the former cases, where subjects’ own group had
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CP treatment, Average of Periods 1-40
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Figure 2: Distributions of subjects” guess leads of their own group in the CP
treatment

This behavior, however, did not occur when a strong support base was re-
vealed in the partial information scenario.

Finally, for H1 and H3, the effect of the high pivotal belief on turnout is
not enough to explain the failure of support. This is because the difference
between Pa(3, 1) and pi(3, 1) (Ps(1, 3) and p§(1, 3)) is the largest among
all the cases, while the difference between BA(S, 1) and b3 (3, 1) (65(1, 3)
and b (1, 3)) is small, as shown in the right top panel in Figure 1. Hence, in

a weak support base, the subjects tended to underestimate the probability of losing the game,
shown by the bars lower than the dots at “Guess Lead of Own Group = —2” and “Guess
Lead of Own Group = —3” in the top left subfigure in Figure 2 and top right subfigure in
Figure 3. By contrast, in the latter cases, where subjects’ competing group had a weak support
base, the subjects tended to underestimate the probability of winning the game, shown by
the bars lower than the dots at “Guess Lead of Own Group = 1” and “Guess Lead of Own
Group = 27 in the top left subfigure in Figure 3 and top right subfigure in Figure 2. In sum,
subjects in the partial information scenario with a revelation of a weak support base of a

group tended to be moderate in beliefs with different reasons.
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PC treatment, Average of Periods 1-40
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Figure 3: Distributions of subjects’ guess leads of their own group in the PC
treatment

PP treatment, Average of Periods 1-20
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Figure 4: Distributions of subjects” guess leads of their own group in the PP
treatment

addition to the pivotal effect, there were likely to be other important factors
affecting turnout of the subjects who had complete certainty that their group
was the frontrunner in the election. This will be discussed in Section 4.3.
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Result 2 summarizes Section 4.2 and explains the failure to support H2.

Result 2.  On average, subjects beliefs of being pivotal were much higher
than theory predicts when they observed a weak support base in the partial in-
formation scenario. Combined with the finding that subjects’ voting propensity
increased with their pivotal beliefs, the high pivotal beliefs help explain the un-
expectedly high turnout in the cases with a revelation of a weak support base in
the partial information scenario, causing it to be not lower than the turnout in
the corresponding complete information scenario.

4.3 Generalized disappointment aversion

In this section, I study the unexpectedly high value of Pa(3, 1) or Pg(1, 3);
that is, the unexpectedly high turnout of the subjects who were in the
(3, 1; A) or (1, 3; B) case of the CC treatment. Without loss of gener-
ality, in the following I consider the (3, 1; A) case, and refer to the A group
revealing a strong support base (Ra = 3) as the frontrunner party and its
competing B group revealing a weak support base (Rg = 1) as the un-
derdog party. The Pa(3, 1) is 0.659, yielding the observed critical voting
cost of 7.25 for passive partisans of the frontrunner party.” This value is
much higher than the theoretical critical voting cost of 4.48, obtained from
PA(3,1) = 0.407. The difference between the theoretical and observed
critical voting costs is 2.77, implying that when a subject learned that her
party was the frontrunner party,she would be willing to pay an additional
2.77 costs to vote in order to increase her party’s probability of not losing
from 0.9 to 1.1

The literature has discussed various factors, such as the pivotal beliefs,
bounded rationality, bandwagon effects, and risk aversion, that may account
for high voter turnout. In addition to the pivotal beliefs that has been dis-
cussed in Section 4.2, the effects of bounded rationality, bandwagon, and

9According to equation (1) or (2), p = F(€), where P refers to the voting probability,
and € refers to the critical voting cost. Since the voting cost distribution is uniform ranging
from 0 to 11, p = €/11. That is, € = 11p.
101f subject i of the frontrunner party decides not to vote, her party’s probability of not
losing the election will be 1 — (p’l‘;)3 = 1—0.465°> = 0.9, where pg = 0.465 is the
voting probability of each member of the competing underdog party. By contrast, if subject
i decides to vote, her party’s probability of not losing the election will be 1 since all of her

members will vote.
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risk aversion have also been examined. The results are presented in Appen-
dices E, E and G, showing that all of them are unsuccessful in explaining
the unexpectedly high turnout of the frontrunner party in the experiment.

In addition to the factors mentioned above, a possible explanation for
the high turnout of the frontrunner party is expectation-based loss aversion
(K8szegi and Rabin, 2006, 2007) or disappointment aversion (Gul, 1991).
They both belong to the concept of reference-dependent preferences. The
idea is as follows: when passive partisans are in a situation where their party is
very likely to succeed, their expectation of winning the election will be high;
therefore, if their party loses the election in the end, they will suffer a lot of
disappointment. To prevent this from happening, those passive partisans are
willing to vote even if their party is considered to be very likely to win the
election without their votes. As a result, a pivotal voter model considering
disappointment aversion (DA) predicts a higher turnout for the frontrunner
party than the model without considering it.

Although the DA effect may explain the high turnout of the frontrunner
party, it cannot explain the turnout of the underdog party observed in my
experiment. This is because it predicts a lower turnout for the underdog
party than the model without considering the DA effect.!!
turnout rate of the underdog party observed in my experiment is close to
the prediction of the benchmark model, or the model presented in Section
2. That is, the DA effect may account for Pa(3, 1) being much higher than
PA(3, 1), whereas it cannot explain that Pg(3, 1) is close to p§(3, 1).

To solve the asymmetric observed turnout rates in my experiment, we
may consider Routledge and Zin (2010), which extends Gul (1991)’s idea to
build a generalized disappointment aversion model in which only the out-

However, the

comes that lie below the disappointment threshold are considered. Specifi-
cally, they provide a preference specification capturing DA as follows

uuP) = Y p(x)ul) =6 Y px) (UGP) —u(x))),

XjeX Xj < (p)
(11)

where X; is an outcome of lottery p with probability p(X;j), u(p) is the

HTf the DA effect is considered, then when passive partisans are in a situation where their
party is very likely to lose but they still turn out to vote, it will raise their expectation of
winning, leading to more disappointment once their party loses the election in the end,
when compared with abstaining from voting. To avoid this, the passive partisans are less

willing to vote when the chance of winning the election is small.
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certainty equivalent for lottery P, and 6 and § are preference parameters.
The § parameter is assumed to be less than one, indicating that outcomes
are disappointing only if they lie below the certainty equivalent. The 6
parameter measures the utility loss once the disappointing outcomes occur.
For convenience, in the following, I call the benchmark model incorporating
the GDA effect presented in equation (11) the GDA model.

I first apply the GDA model to the frontrunner party. For simplicity, I
assume U(X) = X. Both voting and abstaining can be viewed as lotteries with
three possible outcomes: WIN, LOSE, or TIE. The differences between the
voting lottery (lottery V) and the abstaining lottery (lottery A) are as follows.
First, lottery A does not cost anything, whereas lottery V' costs each subject
a privately drawn voting cost. Second, compared with lottery A, lottery
V has a higher probability for WIN, the reward of which is higher than
those of LOSE and TIE. For a subject of the frontrunner party, whether
her party wins the election depends on the turnout rates of the frontrunner
and underdog parties. Hence, given that group A is the frontrunner party,
I use P4A(3,1) and p§(3, 1) to calculate the probabilities for outcomes of
lottery V and lottery A for group A. Then, according to equation (11), each
(0, 8) pair provides (V) and p(A) for lottery V and lottery A, respectively,
representing the expected payoffs from voting and abstaining.

To estimate the parameters 6 and §, I follow individual choice behavior
research (Luce, 1959; McFadden, 1974; McKelvey and Palfrey, 1995) to
consider a probabilistic choice function with a logit response parameter A,
which can be interpreted as the level of rationality. Then, with the expected
payoffs presented above as well as the decision and voting cost data of the
frontrunner party, I obtain maximum-likelihood parameter estimates (and
standard errors): § = 50 (0.07), § = 0.138 (0.07), and & = 17.02 (0.12).
The results suggest that only the outcomes that were very far below the
certainty equivalent disappointed the subjects (8 = 0.138), but when the
disappointing outcome occurred, it caused a lot of disutility (@ = 50)."2
Details for the maximum likelihood estimation are given in Appendix H.

Substituting & = 50 and § = 0.138 into equation (11) yields u(V) =
19.95 and n(A) = 12.1, which respectively represents the expected payoffs

1256 far the model proposed by Routledge and Zin (2010) has been used by only a few
studies (Bonomo et al., 2011; Chapman and Polkovnichenko, 2009; Liu and Miao, 2015;
Routledge and Zin, 2010), and the values of the 6§ and 8 parameters are very different in

different studies. As a result, the range of the value of @ and that of § are undetermined.
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Table 4: Comparison between with and without GDA

Frontrunner Underdog
Case (3,1; A)  Case (3, 1; B)

Observed critical voting cost 7.25 4.42
Theoretical critical voting cost (w/GDA) 7.82 5.00
Theoretical critical voting cost (w/o GDA) 4.48 5.12

Note: Case (3, 1; A) and Case (3, 1; B) are defined in Table2. Theoretical
critical voting cost (w/GDA) refers to the predicted critical voting cost of the
GDA model. Theoretical critical voting cost (w/o GDA) refers to the predicted
critical voting cost of the benchmark model presented in Section 2.

from voting and abstaining after considering the GDA effect for subjects
of the frontrunner party. The difference between ©(V) and p(A) is 7.82,
representing the critical voting cost after considering the GDA effect. This
number is close to the observed critical voting cost of 7.25, implying that
taking the GDA effect into account seems to be able to explain the voting
behavior of subjects of the frontrunner party. By contrast, without the GDA
effect, the theoretical critical voting cost derived from the benchmark model
is 4.48, which is very different from the observed critical voting cost.

Then, I turn to see if the GDA model can explain the voting behavior
in the underdog party. With the same method presented above, I obtain the
critical voting cost of 5 for the underdog party after considering the GDA
effect.'® This number is close to the observed critical voting cost of 4.42
(obtained from Pg(3, 1)) and therefore implies that taking the GDA effect
into consideration seems to be able to explain the voting behavior of the
underdog party as well. Table4 summarizes the discussions above.

Although the LOSE outcome leads to disappointment in both the fron-
trunner and underdog parties, the levels of disappointment in the two parties
are very different. When subjects of the frontrunner party choose to abstain,
the disutility from disappointment is 3.34 if it causes their party to lose
the election, while when subjects of the underdog party choose to vote but

13Specifically, given that group B is the underdog party, I use PAG3. 1) and P53, 1) to
calculate the probabilities for the WIN, LOSE, and TIE outcomes of lottery V and lottery
A for the underdog party. Substituting & = 50 and § = 0.138 into equation (11) yields
n(V) =7.28 and u(A) = 2.28 for the underdog party; the difference between them is 5.
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their party eventually loses the election, the disutility from disappointment
is only 0.12.' This is because the LOSE outcome lies far below the expec-
tation of the subjects of the frontrunner party but not the underdog party.
The GDA model captures this asymmetric phenomenon, and hence fits the
observed turnout rates of the frontrunner and underdog parties better than
other models.

Finally, I examine whether the GDA model fits the observed turnout
rates in other cases. The results presented in Table 10 of Appendix H show
that the GDA model fits the data better than the benchmark model in the
cases with a revelation of a strong support base in the partial information
scenario. This finding helps explain the unexpectedly low turnout of the
subjects who had partial information that they were likely to fall behind
in the election (i.e., Pa(0.6,3) and Pg(3, 0.4)). In addition, it is worth
noting that the disutility from disappointment is small in the cases of the
partial information scenario. This is because partisans do not have certain
information about each party’s support base, which lowers their expectation
for the election outcome and hence the disappointment level.

By contrast, the GDA model does not perform well in the cases with
a revelation of a weak support base in the the partial information scenario
(Appendix H, Table 10). However, this does not mean that disappointment
aversion did not occur in those cases. Recall that Result 2 shows that in the
CP and PC treatments, when a weak support base was revealed, subjects’
beliefs of being pivotal became higher than theory predicts, which affects
P(X;j) in equation (11). The same finding is shown in Case (1, I; A) or
(1, 1; B) and Case (0.6, 0.4; A)."> If the effect of high pivotal beliefs can
be appropriately incorporated into the GDA model, a good fit between the
GDA model and the data in those cases may be found. I leave it to the future
work. Result 3 summarizes Section 4.3, which provides an explanation for
the failure to support H1 and H3.

4The disappointment level is calculated by the absolute difference between the the pre-
dicted critical voting cost of the GDA model and that of the benchmark model presented in
Table4.

5That is, subjects had unexpectedly high pivotal beliefs in these cases, affecting p(x j)in
equation (11) and hence the performance of the GDA model. The only exception is Case
(0.6, 0.4; B), where subjects’ pivotal belief was similar to the theoretical prediction but the
GDA model does not perform well.
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Result 3.  The pivotal voter model incorporating the generalized disappoint-
ment aversion effect provides an explanation for the observed unexpectedly high
turnout of the frontrunner party in the complete information scenario. The idea
is that to avoid a great disappointment from losing the election, subjects of the
[frontrunner party were willing to vote, even if they knew their votes would not
be pivotal.

5 Conclusion and policy implications

This paper examines how different degrees of information revelation affect
voting behavior. In particular, it compares two types of scenarios: one is
that voters know each party’s support base (complete information scenario),
and the other is that voters know one party’s support base but are limited
to knowing the probability of the support base of the other party (partial
information scenario).

There are two main findings. First, in the partial information scenario
with a revelation of a weak support base, subjects tended to have higher be-
liefs of being pivotal than theory predicts, which caused their turnout rates
to be not lower than those in the corresponding complete information sce-
nario. Second, in the complete information scenario, turnout of the subjects
of the frontrunner party was significantly higher than the subjects’ best re-
sponse to their pivotal belief, which can be explained by the pivotal voter
model incorporating the generalized disappointment aversion effect (here-
after the GDA model). The caveat for this finding is that the GDA model
does not fit the cases where subjects had unexpectedly high pivotal beliefs.
Since disappointment aversion is a possible important factor affecting voting
behavior, one of the future research directions would be designing experi-
ments aimed to study such effect, including studying how to appropriately
incorporate the effect of high pivotal beliefs into the GDA model.

The experimental results provide useful advice for parties or candidates
in elections. If a candidate is a frontrunner in the election, showing this
information to her passive supporters would encourage them to vote, rather
than decreasing their voting propensity. This is because those supporters
would like to avoid a great disappointment caused by their preferred candi-
date from leading to losing the election due to their abstention from voting.
But how to convince voters that a candidate is a frontrunner is important
since it would affect the disappointment level. For example, both polls and
campaign rallies can reveal parties’ support levels; which one is better? Polls
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usually reveal distributions of electorate preferences, and more importantly,
support levels shown by polls may be viewed as cheap talk since people show
their support through polls without paying any costs. By contrast, if a candi-
date conducts campaign rallies, her base supporters will pay (money or time)
to participate and show their support for the candidate, thus providing more
certainty regarding the actual level of support for the candidate.

Appendices

Appendix A Experimental instructions

There were four treatments in the experiment: CC, CP, PC, and PP
treatments. The CC treatment was easy for subjects to understand since
the information regarding the actual number of the base partisans of each
party was revealed to subjects. However, the CP, PC, and PP treatments
were not that easy to understand since only the probabilities, not the actual
numbers, of the base partisans of the parties were revealed.

To help subjects understand the experiment more easily, I set two stages
for the experiment. In the first stage all subjects had to make their voting
decisions in a situation where the actual number of the base partisans of each
party was revealed. After participating in the first stage, the subjects became
familiar with the experiment. Then, I conducted the second stage, which
was similar to the first stage, except that in the second stage the information
regarding the base partisans of each party varied for each treatment. By do-
ing so, we can make sure that the subjects fully understood the experiment,
and I collected the experimental data for the second stage to investigate the
effects of information on voting behavior.

The instructions provided below are for the PC treatment. The in-
structions for the other treatments coincide with this one except for the
information regarding the base partisans of each party.

A.1 Experimental instructions and screenshots for the PC treatment

[Each subject received instructions on his or her computer screen. In ad-
dition to the computerized instructions, Powerpoint slides with the same
content were projected in front of the room. Instructions were read aloud
to make sure every subject understood them. After reading the instructions,
several control questions were asked. This allows us to check whether sub-
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jects understood how to make decisions and how to calculate their earnings.
The experiment started after all subjects had answered all control questions
correctly.]

General information

Welcome! You are now going to participate in a decision-making session. In
this session you can earn money. How much money you will actually earn
depends on your decisions, chance, and on others’ decisions. You are under
no obligation to reveal your winnings to other participants. During the
session your earnings are counted in points. At the end of the session your
earnings in points will be exchanged into dollars according to the following
exchange rate: 25 points = 1 dollar. At the end of the session you will
be paid the $5 show up fee plus your earnings confidentially in cash. This
total will be rounded up to the nearest quarter or dollar. It is important
that you understand these instructions correctly. So we ask you to listen to
these instructions carefully. During the session you may not communicate
with other participants. During the session, if you have a question please
raise your hand. One of us will then come to your table and answer your
question personally.

The session you are participating in is broken down into 2 stages. The
two stages are independent, and each stage consists of 2 parts: 1 practice
and 1 paid part. In the first stage, the practice part consists of 2 periods and
the paid part consists of 10 periods. In the second stage, the practice part
consists of 4 periods and the paid part consists of 40 periods. In each period
you will be randomly assigned to a group with other participants. And you
will be randomly reassigned to a new group with different participants after
each period. All interaction is anonymous during the session.

Instructions for the First Stage

There are two types of groups: ALPHA groups and BETA groups. Each
ALPHA group will be randomly paired with a BETA group in each period.
In the beginning of each period, you will be randomly assigned to an AL-
PHA group or a BETA group. You will not necessarily be in the same group
during this experiment.

Each ALPHA group has 4 members and each BETA group has 4 mem-
bers. For each group, these 4 group members include human members and
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computer members. Human members are participants who are sitting in
the lab and are participating in this experiment. Computer members are
computers.

There are four possible cases:

1. Each ALPHA group has 1 computer member; each BETA group has 1
computer member.

2. Each ALPHA group has 1 computer member; each BETA group has 3

computer members.

3. Each ALPHA group has 3 computer members; each BETA group has 1

computer member.

4. Each ALPHA group has 3 computer members; each BETA group has 3

computer members.
In each period, one of the four cases will randomly occur.
Your Decision

Each participant (i.e., human member) will have to choose between the
following two options: X or Y. Computer members will always choose X. Be-
fore you make your choice, the screen will inform you which group you are
in and how many computer and human members there are in each group.

[Show SCREEN 1.]

On the top of the screen, you can see the numbers of computer members
in each ALPHA group and in each BETA group. It should be 1 or 3. Since
each group has 4 members, the number of human members is equal to 4
minus the number of computer members. Note that every participant will
see the same information. On the middle of the screen you can see which
group you belong to in this period. And you can see the two options, X
and Y.

Your Payoffs

After each participant has made the choice, your earnings are computed
according to two rules: Rule 1 and Rule 2. Recall that an ALPHA group is
randomly paired with a BETA group. For convenience, we call the group
paired with your group “your paired group.”
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Period

Tralt outor 1 Remairing fime [sec]

BETA
Number of computer members that will always choose X 1

MNumber of human members that can choose either X or 3

Your Group  BETA

Your Choice  © ¥
v

*Your Y-bonus =

Rule 1:
I your group has more member s choosing X, you will earn 21 points:
f both groups have the same number of members choosing X, you will sarn 11 points;
i your group has less members choosing X, you will arn 1 point.

Hote: For ach aroup, aroup members include somputer members and human members. That is, for sach aroup,
#0f group members choosing X = # of human members choosing X + # of compter members (that always chooss X).

Rule 2:
1 you choose X, you will not earn your ¥ bonus;
if you choose ¥, you will earn your ¥ bonus,

Figure 5: SCREEN 1

Your Payoffs - Rule 1. If your group has more members choosing X than
your paired group, you will earn 21 points. If both groups have the same
number of members choosing X, then you will earn 11 points. If your group
has less members choosing X than your paired group, you will earn 1 point.
Note that for each group, group members include human members and
computer members.

Your Payoffs - Rule 2. In addition to the earnings described above, you
may earn your Y bonus. The amount of your Y-bonus is assigned randomly
by the computer and is shown on your screen. In any given period you have
an equal chance of being assigned any Y-bonus between 0 and 11 points.
Different participants will typically have different Y-bonuses. If you choose
Y, you will earn your Y bonus. If you choose X, you will NOT earn your Y
bonus.

[Show SCREEN 1.]

On the middle of the screen, you can see your Y-bonus. On the bottom
of the screen, you can see Rule 1 and Rule 2. They show you how your
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Table 5: Examples for decisive/non-decisive cases

case 1 case2 case3

# of other members in you group choosing X 2 2 2
# of your paired group members choosing X 2 3 4
Your choice X X X
Your payoff from Rule 1 21 11 1
Your choice Y Y Y
Your payoff from Rule 1 11 1 1
Are you decisive? Yes Yes No

earnings will be calculated according to your choice. Now you can make
your choice there by clicking with your mouse.

Guess: Probability that your choice is decisive

After making your actual choice, you will be asked to guess: “What is
the probability that your choice is decisive for this period’s outcome?” Your
choice is decisive if your choice determines your payoff from Rule 1 holding
constant the choices of all other participants. In other words, your choice is
decisive if the number of other members in your group choosing X is equal
to or one less than the number of your paired group members choosing X.
Below are examples. [Show Table5.]

[Show SCREEN 2.]

On the middle of the screen, you can see the question, “Your guess as to
the probability that your choice is decisive,” and an input box. In this box,
please indicate your probability by entering any real number between 0 and
1 inclusive. A “0” means “I definitely will not be decisive” and “1” means “I
definitely will be decisive.” For example, if you think there is a 23 percent
chance that your choice will be decisive, enter 0.23 in the input box. If you
think there is a 89 percent chance that your choice will be decisive, enter
0.89. This number can go up to two decimal points.

For each of you, after entering a probability u € [0, 1], your computer
will select a random number r € [0, 1] for you. If u > r, you will earn

the guess bonus by Scheme U. If u < r, you will earn the guess bonus by
Scheme R.
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Period

Triahl outor 1 Remaining time [sec}

seTA
Number of computer members that will always choose X 1

Number of human members that can choose either X or Y 3

Your Group BETA

You have chosen x
v

Your guess as to the probability that your choice is decisie ||

Vour chaice is decisive it
your choice determines your payoff from Rule 1
halcing constart the choices of al diher participants

Thatis, your decision is decisive if
e number of other members of your sroup choosing X
is equal to or one less than
the rumber of your paired group members choosing X.

Figure 6: SCREEN 2

e Scheme U: You will earn 0.5 points if your choice is decisive and 0 points
otherwise.

e Scheme R: You will earn 0.5 points with probability I and 0 points with
probability 1 —r.

According to Schemes U and R, you will maximize your decisive-guess bonus
by reporting your true belief about what you think the probability is that you
will be decisive.

Suppose that you think your choice will be very likely to be decisive.
For example, suppose that you think there is a 92 percent chance that your
choice will be decisive, and therefore you enter a probability of 0.92. Then
your computer will select a random number for you. Suppose that the ran-
domly selected number is 0.77. Since the selected number is smaller than
your guess, you will earn 0.5 points if your choice is decisive and 0 points
if it is not. Suppose that the randomly selected number is 0.98. Since the
selected number is larger than your guess, you will earn 0.5 points with a
probability of 0.98 and 0 points with a probability of 0.02.

Guess: Final outcome
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Period

Triahl outof 1 Remaining time [sec}

sETA
Number of computer members that will always chaose X 1

Nurnber of human members that can choose either X or Y 3

Your Group BETA

‘You have chosen *
FH

“Your guess for the final outcome:
Number of ALPHA group members choosing X [ |

Number of BETA group members choosing 3 [ |

Remember 1o include your own ehoice.

Note: For each group, group memiers include computer members and humsn members., That i, for each group,
# of group members choosing X = # of human mermiers choosing X + # of campuler members (that always choose K,

!

Figure 7: SCREEN 3

In addition to reporting your decisiveness prediction, you will be also
asked to guess “the number of your group members (including you) choos-
ing X.” The number of your paired group members choosing X. You will
earn 0.5 points if one of your guesses is correct and earn 1 point if both are
correct.

[Show SCREEN 3.]

On the middle of the screen, you can see two input boxes. In these
boxes, please enter your guesses for the final outcome. Note that for each
group, group members include human members and computer members.
Don’t forget to include your own choice when entering your guess about the
number of your group members choosing X.

Feedback

After you and other participants have all made your choices of X or Y
and made your guesses, the screen will show you the results of this period.
First, you can see which group you are in and the choice you have made for
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Period

Trish eutof 1 Remsiningtime [sec]: 7

Your Group  BETA

“our choice Y

Rule 1:
I your group has more members choosing X, you will earn 21 points;
Iboth groups have the same number of members choosing X, you will earn 11 points;
Iyour group has less members chaosing X, you will sarn 1 paint.
MNurmber of ALPHA Group members choosing X 3
Number of BETA Group mermbers choosing X 3

Your payoff from Rule 1 #
Rule 2;
If you choose X, you will not earn your Y bonus;
if you choose ¥, you will earmyour Y bonus.
Your Y-bonus B

“four payoff from Rule 2 El

Your Guess Bonus

Your guess about the ALPHA groug 4
Your guess about the BETA group 3
Your outcome-guess bonus 05
Were you decisive this period? ves
Your guess as to the probatility that your decision is decisive 087
The randomly selected number r o1
Your decisive-guess bonus 05

“¥our payaff from Rule 1+ Your payoff from Rule 2 + Your Guess Bonus = Your net payoff 2100
Your cumulative payoff 000

Figure 8: SCREEN 4

the current period. Second, you can see the number of your group members
(including you) choosing X and the number of your paired group members
choosing X. And you can also see your payoffs from Rules 1 and 2. Third,
you can see your guesses about your group and your paired group and your
outcome-guess bonus. Fourth, you can see whether you were decisive for
the current period, your guess about the probability that your choice is deci-
sive, the number which was randomly selected by your computer, and your
decisive-guess bonus. In sum, your net payoff is equal to your payoff from
Rule 1 plus your payoff from Rule 2 plus your guess bonus. And you can
also see your cumulative payoff.

[Show SCREEN 4.]
History Table and Record Sheet

After you have made your choice and clicked the OK button, you need
to wait for other participants. When you are waiting, the screen shows you
the history table. It reminds you of your recent history of all past periods.
When all participants have made their choices, you will automatically move
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on to the next screen. So you may not have enough time to read the history.
If you want to record the history, you can write it down on the record sheet
we gave you.

Control Questions

[QUIZ] You are now going to see a few questions on the screen. These
questions apply to the first stage. Please answer the questions by clicking
the mouse on the radio button you think is correct. The questions are only
meant to indicate whether you have understood the instructions correctly.
All questions are based on arbitrary examples. If you have questions, please
raise your hand. [END QUIZ]

If you have any questions, please raise your hand. If you don’t have
questions, we now get started! You'll first have 2 periods for practice and
then 10 periods for paid. [Play periods 1-10.]

Instructions for the second stage
The second stage is the same as the first stage EXCEPT that

1. The screen will inform you how many computer members there are in
a BETA group but will NOT inform you the number of the computer
members in an ALPHA group.

2. For ALPHA groups, the screen will only inform you the probabilities
that the numbers of computer members are selected.

The probabilities are as follows. The probability that each ALPHA
group has 1 computer member is 0.4. The probability that each ALPHA
group has 3 computer members is 0.6. The realization of the numbers of
computer members each period is independent of the realization in all other
periods.

[Show SCREEN 5.]

On the top of the screen, you can see the number of computer members
in each BETA group. It should be 1 or 3. For each ALPHA group, you
only see the probabilities. The probability that each ALPHA group has 1
computer member is 0.4. The probability that each ALPHA group has 3
computer members is 0.6. Since each group has 4 members, the number of
human members equals 4 minus the number of computer members. Note
that every participant sees the same information.
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Period

Trialt outar 1 Remaining time [sec}

BETA

Number of computer members that will always choose X v acemecon.femB
Nurriker of human mermkers that can choose either X or Y 3
Your Group 445
Your Choice  © ¥
¥
Your Y-bonus 10

Rule 1:
If your group has more members choosing X, you will earn 21 points;
if bath groups have the same number of members choosing X, you will earn 11 points:
If your group has less members choosing X. you will earn 1 point.

Note: For sach groug, group members inchade computer mermbers and human members, That s, for each arous,
# of group members choosing X = # of human meimbers choasing X + # of computer members (hat ahways choose K

Rule 2:
If you choose X, you will ot earn your Y bonus;
if you choose Y. you will eam your Y bonus.

i

Figure 9: SCREEN 5

[Show SCREEN 6, SCREEN 7, and SCREEN 8.]
History Table and Record Sheet

The history table will show you the realized numbers of the computer
members in each ALPHA group in previous periods. That is, when you
make your choice for the current period, you dont know the number of the
computer members in each ALPHA group; you only know the probabilities.
But when this period has finished, you can see the realized number from the
history table.

Control Questions

[QUIZ] You are now going to see a few questions on the screen. These
questions apply to the first stage. Please answer the questions by clicking
the mouse on the radio button you think is correct. The questions are only
meant to indicate whether you have understood the instructions correctly.

All questions are based on arbitrary examples. If you have questions, please
raise your hand. [END QUIZ]
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Period

Triaht outar 1 Remaining time [sec}

\ BETA

Number of computer members that will always choose X 1

Number of human members that can choose either X or Y 3
Your Group »
‘You have chosen *
¥

Your guess as ta the probaity that your choice is decisive [ |

Vour choice is decisive if:
your choice determines your payoff from Rule 1
holcing constert the choicee of al other pericipants

hat s, your decision is decisive it
the number of othet members of your group choosing X
is equal to or one less than
the number of your paired group members choosing K,

Figure 10: SCREEN 6

Period

Triahl outor 1 Remaining time [sec}

. BETA

Number of computer members that will always choose X 1

Nurrker of human mermbers that can choose either X or Y 3

Your Group A

You have chosen X

“Your guess for the final outcome

Number of ALPHA group members choosing X [ |
Number of BETA group members choosing 3 [ |

Remember o include your own choiee.

Nete: For each croup, group members include camputer members and human members., That i, far each group,
# of group members choosing X = # of human members choosing X + # of compuler members (that always chooss X,

Figure 11: SCREEN 7
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Period

Tralt outor 1 Remainingtime [sec] 22

Your Group  ALPHA

“our choice ¥

Rule 1:
Ifyour group has more members choosing X, you will earn 21 points;
# both groups have the same number of members cho will earn 11 points;
If your group has less members choosing X, you will carn 1 point,

MNurnber of ALPHA Group mermbers choosing X 3

MNurnber of BETA Group members choosing X s
Your payoff from Rule 1 i
Rute 2:

If you choose X, you
if you choose V,

¥ bonus;

Your Y-bonus D

Yourpayofffrom Rule2 10

Your Guess Bonus

Your guess about the ALPHA group 3

Your guess about the BETA group 2

“Your outcome-guess bonus 05
Were you decisive this period? Yes

Your guess as to the probability that your decision is decisive 0rs
The randomly selected nurmber r =

Your decisive-guess bonus 08

“Your payoff from Rule 1 + Your payoff from Rule 2 + Your Guess Bonus = Your net payoff 2200
Your cumulative payoff 000

Figure 12: SCREEN 8

If you have any questions, please raise your hand. If you don’t have
questions, we now get started! You'll first have 4 periods for practice and
then 40 periods for paid. [Play periods 1-40.] The experiment has finished.
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Appendix B Descriptions of cases of treatments

Table 6: Description of each case of each ttreatment

Treatment

Case

Description

CC

(1,1; Ayor (1,1; B)

(3,1; Aor(1,3;B)

(1,3; A)or (3,1; B)

(3,3; A)or (3,3; B)

There are 1 base and 3 passive partisans in
each of Aand B groups. Subjecti is in either
an A or B group.

There are 3 base and 1 passive partisans in
each A group; there are 1 base and 3 passive
partisans in each B group; subjecti is in an
A group. Or there are 3 base and 1 passive
partisans in each B group; there are 1 base
and 3 passive partisans in each A group; sub-
jecti isin a B group.

There are 3 base and 1 passive partisans in
each A group; there are 1 base and 3 passive
partisans in each B group; subjecti isina B
group. Or there are 3 base and 1 passive par-
tisans in each B group; there are 1 base and
3 passive partisans in each A group; subject
i isinan A group.

There are 3 base and 1 passive partisans in
each of Aand B groups. Subjecti is in either
an A or B group.

CP

(1,0.4; A

(1,0.4; B)

There are 1 base and 3 passive partisans in
each A group. There is a probability of 0.4
that each B group has 3 base and 1 passive
partisans, and a probability of 0.6 that each
B group has 1 base and 3 passive partisans.
Subjecti is in an A group.

There are 1 base and 3 passive partisans in
each A group. There is a probability of 0.4
that each B group has 3 base and 1 passive
partisans, and a probability of 0.6 that each
B group has 1 base and 3 passive partisans.
Subjecti is in a B group.
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Table 6: Description of each case of each ttreatment (Cont.)

Treatment

Case

Description

(3,0.4; A

(3,0.4; B)

There are 3 base and 1 passive partisans in
each A group. There is a probability of 0.4
that each B group has 3 base and 1 passive
partisans, and a probability of 0.6 that each
B group has 1 base and 3 passive partisans.
Subjecti is in an A group.

There are 3 base and 1 passive partisans in
each A group. There is a probability of 0.4
that each B group has 3 base and 1 passive
partisans, and a probability of 0.6 that each
B group has 1 base and 3 passive partisans.
Subjecti is in a B group.

PC

0.6, 1; A

(0.6, 1; B)

(0.6, 3; A)

(0.6, 3; B)

There are 1 base and 3 passive partisans in
each B group. There is a probability of 0.6
that each A group has 3 base and 1 passive
partisans, and a probability of 0.4 that each
A group has 1 base and 3 passive partisans.
Subjecti is in an A group.

There are 1 base and 3 passive partisans in
each B group. There is a probability of 0.6
that each A group has 3 base and 1 passive
partisans, and a probability of 0.4 that each
A group has 1 base and 3 passive partisans.
Subjecti is in a B group.

There are 3 base and 1 passive partisans in
each B group. There is a probability of 0.6
that each A group has 3 base and 1 passive
partisans, and a probability of 0.4 that each
A group has 1 base and 3 passive partisans.
Subjecti is in an A group.

There are 3 base and 1 passive partisans in
each B group. There is a probability of 0.6
that each A group has 3 base and 1 passive
partisans, and a probability of 0.4 that each
A group has 1 base and 3 passive partisans.
Subjecti is in a B group.
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Table 6: Description of each case of each ttreatment (Cont.)

Treatment Case Description

PP (0.6,0.4; A) There is a probability of 0.6 that each A
group has 3 base and 1 passive partisans, and

a probability of 0.4 that each A group has

1 base and 3 passive partisans. There is a

probability of 0.4 that each B group has 3

base and 1 passive partisans, and a probabil-

ity of 0.6 that each B group has 1 base and 3

passive partisans. Subjecti is in an A group.

(0.6,0.4; A) There is a probability of 0.6 that each A
group has 3 base and 1 passive partisans, and

a probability of 0.4 that each A group has

1 base and 3 passive partisans. There is a

probability of 0.4 that each B group has 3

base and 1 passive partisans, and a probabil-

ity of 0.6 that each B group has 1 base and 3

passive partisans. Subjecti is in a B group.

Note: Although I use subject i in the table as an example, each subject only
participated in one session of a treatment. That is, a subject only faced 4 cases in
the experiment if she was assigned to either the CC, CP, or PC treatment, or
faced 2 cases if being assigned to the PP treatment.

Appendix C Regression analysis

This section consists of two parts. Part 1 is about examining the effect of
pivotal beliefs on voting behavior. Part 2 is about testing whether learning
occurred during the course of the experiment.

Part 1. To explore the relationship between subjects’ beliefs of being
pivotal and their voting strategies, I run a probit regression for each treat-
ment, clustering standard errors at the individual level. Regression models
involve the following variables. The Voze dummy dependent variable equals
1 when a subject decided to vote. Two independent variables are used to test
the predictions of the pivotal voter model: (1) Lead = 0 or —1: a dummy
variable equal to 1 if a subject’s stated belief about the lead of her group (not
including this subject’s own vote) equaled 0 or —1. This dummy variable
equal to 1 implies that a subject believed her vote would change the election
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outcome; (2) Voting Cost: a subject’s Y bonus which was randomly drawn
in each period. In addition to these two variables, I follow Duffy and Tavits
(2008) and Agranov et al. (2018) to consider other relevant independent
variables: Vored at -1, Won at t-1, Voted and Won at t-1, and Period; the first
three are dummy variables. To control for the effect of different information
revelation about the base partisans of the two groups in each case, the Case
variables (as defined in Table2) are added.

Table7 shows the regression results. Period is insignificant (or significant
but very small), implying that there were barely any time effects.'® Vored ar
t — 1 is insignificant in every treatment, implying that every election in the
experiment was viewed as a one shot game as assumed. The coefficients of
Voted and Won att — 1 are positive and those of Won att — 1 are negative,
implying that subjects tended to choose a strategy that had led to a good
outcome in the past period of the game, but this effect did not occur to
the subjects who had not chosen that strategy in the past. These results are
consistent with those in Duffy and Tavits (2008) and Agranov et al. (2018).

The results for Lead = 0 or —1 and Voting Cost are consistent with the
predictions of the pivotal voter model. Specifically, Lead = 0 or —1 is signif-
icantly positive and Voting Cost is significantly negative in every treatment,
implying that subjects’ propensity to vote increased with their beliefs of be-
ing pivotal but decreased with their voting costs. In addition, the similarity
of the coefficients for Lead = 0 or —1 in the four treatments implies that the
pivotal effect was similar across different treatments.

Part 2. To examine whether learning occurred during the course of
the experiment, I performed a probit regression for each treatment with the
accuracy of a subject’s belief about the lead of her group as the dependent
variable and Period as the independent variable, clustering standard errors
at the individual level. More specifically, the Accuracy dummy dependent
variable equaled 1 when a subject’s stated belief about the lead of her group
(Guess Lead) equaled the actual lead (Actual Lead). In addition to Accuracy,
I used the absolute difference between Guess Lead and Actual Lead as an-
other dependent variable for robustness check. Other independent variables
included Voting Cost and Case variables, as defined in Tables 7 and 2.

Table8 shows the regression results for the Accuracy dummy dependent
variable. As shown, Period is insignificant in every treatment, implying that

16The coefficient of Period is insignificant in every treatment except the CC treatment.

This may be due to the clear information regarding base partisans in the CC treatment.
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Table 7: Probit regressions explaining turnout (marginal effects reported)

Treatment
Dep = Vote CcC CP PC PP
Voting Cost —0.126™** —0.129%** —0.119%** —0.093%**
(0.015) (0.013) (0.011) (0.012)
Period —0.004** —0.002 0.0004 0.001
(0.002) (0.002) (0.001) (0.003)
Voted at t-1 —0.015 —0.003 0.071 0.055
(0.056) (0.060) (0.062) (0.100)
Won at t-1 —0.003 —0.012%** —0.008%** —0.009
(0.002) (0.003) (0.003) (0.006)
Voted and Won at t-1 0.009*** 0.0127%** 0.006 0.008
(0.003) (0.004) (0.004) (0.007)
Lead = 0 or-1 0.149** 0.121** 0.116* 0.135*
(pivotal, dummy) (0.063) (0.049) (0.066) (0.081)
Cuase (1, 1; A) or (1, 1; B) —0.299%**
(0.110)
Case (3, 1; A) or (1, 3; B) —0.374%**
(0.075)
Case (1,3; A) or (3, 1; B) —0.665**
(0.086)
Case (1, 0.4; A) 0.035
(0.054)
Cuse (1, 0.4; B) 0.170%**
(0.040)
Case (3, 0.4; A) 0.293%**
(0.052)
Cuse (0.6, 1; A) 0.067
(0.047)
Case (0.6 1; B) 0.018
(0.046)
Case (0.6, 3; B) 0.149%**
(0.050)
Cuse (0.6, 0.4; B) —0.041
(0.082)
# of obs. 1,014 1,092 1,170 494

Note: The variables in the first column are defined in the text of Appendix 5 and Table 2.
Case (3, 3; A) or (3, 3, B) is the baseline in the CC treatment, Case (3, 0.4, B) is the baseline
in the CP treatment, Case (0.6, 3; A) is the baseline in the PC treatment, and Case (0.6,
0.4; A) is the baseline in the PP treatment. Standard errors clustered on individuals in
parentheses; ***p < 0.01; **p < 0.05; *p <0.1.
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Table 8: Probit regressions examining learning (marginal effects reported)

Treatment
Dep = Accuracy CC CP PC PP
Voting Cost 0.003 0.003 0.004 —0.008
(0.004) (0.005) (0.005) (0.008)
Period —0.001 0.001 0.001 0.004
(0.002) (0.001) (0.002) (0.004)
Cuse (1, 1; A) or (1, 1; B) —0.363%**
(0.045)
Cuase (3, 1; A) or (1, 3; B) —0.290%**
(0.044)
Case (1, 3; A) or (3, 1; B) —0.365™**
(0.036)
Case (1, 0.4; A) —0.085**
(0.034)
Cuse (1, 0.4; B) 0.017
(0.042)
Case (3, 0.4; A) 0.082%*
(0.044)
Cuse (0.6, 1; A) —0.051
(0.049)
Cuse (0.6, 1; B) —0.097**
(0.043)
Cuse (0.6, 3; B) —0.002
(0.042)
Cuse (0.6, 0.4; B) —0.051
(0.035)
# of obs. 1,040 1,120 1,200 520

Note: The variables in the first column are defined in the text of Appendix 5 and Table 2.
Case(3, 3; A) or (3, 3, B) is the baseline in the CC treatment, Case(3, 0.4, B) is
the baseline in the CP treatment, Case(0.6, 3; A) is the baseline in the PC treatment,
and Case(0.6, 0.4; A) is the baseline in the PP treatment. Standard errors clustered
on individuals in parentheses; ***p < 0.01; **p < 0.05; *p < 0.1. Results for the
|GuessLead — Actual Lead| dependent variable are available on request.

learning did not occur during the course of the experiment. This may be
because each of the CC, CP, and PC treatments consisted of 4 different
cases, and each case randomly occurred in 40 periods of the experiment; sim-
ilarly, the PP treatment had 2 cases and 20 periods in total, with each case
randomly occurring in the 20 periods of the experiment. In other words,
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subjects were not in a specific case for 10 periods and then entered the next
case for another 10 periods. Instead, subjects might face one case in the
t — 1' period and then another case in the t'" period, and on average they
faced each case for around 10 periods. Therefore, it is not surprising that
subjects’ beliefs about others” behavior did not get improved as time went
by since they were unable to directly learn from the last period. The same
result was found for the |[GuessLead — Actual Lead| dependent variable.

Appendix D Subjects’ cutpoints
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Figure 13: Distribution of misclassification rates

In addition to the regression analysis, I further investigate subjects’ be-
havior by examining whether subjects followed their cutpoint rules as the
pivotal voter model assumes. I first estimate each subject’s cutpoint rule
based on the method in Levine and Palfrey (2007); then, for each subject,
I use the estimated cutpoint for her to calculate the size of the error with
respect to that cutpoint.!” Figure 13 displays the density for error rates. As

17See Levine and Palfrey (2007) pp. 150152 for more details.



254 Yi-Yi Chen

shown, around 70 percent of the subjects perfectly classified the decisions
based on their cutpoint rules, and for all subjects the percentage of decisions
correctly classified is greater than 70. This shows that subjects followed con-
sistent cutpoint rules.

Appendix E Bounded rationality

To explain the difference between theory and experimental data, researchers
may first consider the effect of bounded rationality and try the Quantal Re-
sponse Equilibrium (QRE) method. That is, human beings are not fully
rational, resulting in deviations from the equilibrium. However, the piv-
otal voter model incorporating only the effect of bounded rationality (yield-
ing a QRE prediction) is not enough to explain the difference between
PA(3.1) = 0.407 and Pa(3,1) = 0.659 in my experiment. This is be-
cause a QRE value will approach to the theoretical prediction as subjects
are more rational, and it will approach to 0.5, meaning behaving randomly,
as subjects are more irrational. In other words, given that the predicted
PA(3, 1) = 0.407 is below 0.5, the highest QRE value will not be greater
than 0.5 and hence cannot explain the observed Pa(3, 1) = 0.659.

Appendix F Bandwagon effect

An unexpectedly high turnout of majority voters has been found in several
voting studies such as Duffy and Tavits (2008), Grofer and Schram (2010),
and Agranov et al. (2018). These studies provide a possible explanation: the
bandwagon effect, according to which voters are more likely to vote if they
believe that their preferred candidates are likely to succeed. To see if the
bandwagon effect occurred in my experiment, I run a probit regression for
the frontrunner party by considering, in addition to the variables presented
in Table7, an additional independent variable Lead of the majority if in ma-
jority: a subject’s stated belief about the lead of her group (not including this
subject’s own vote) if that number is positive; otherwise, the variable equals
zero.'® If the bandwagon effect existed in the frontrunner party in my exper-
iment, the coefficient of Lead of the majority if in majority is expected to be
significantly positive, meaning that the subjects’ propensity to vote increased
with the number of votes for their party.

18The independent variable Lead of the majority if in majority has been discussed in Agra-
nov et al. (2018). I follow Agranov et al. (2018) to consider this independent variable.
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Table 9: Probit regressions for the frontrunner party
(marginal effects reported)

Frontrunner Frontrunner
Dep = Vote Case (3,1; A)or (1,3; B) Case (3,1; A) or (1, 3; B)
Voting Cost —0.099*** —0.097%**
(0.024) (0.024)
Period —0.007*** —0.007%**
(0.002) (0.002)
Voted at t-1 0.676* 0.661
(0.403) (0.418)
Won at t-1 —0.004 —0.003
(0.008) (0.008)
Voted and Won at t-1 —0.008 —0.007
(0.017) (0.017)
Lead =0 or -1 0.150™*
(pivotal, dummy) (0.059)
Lead of the majority —0.125**
if in majority (0.059)
# of obs. 188 188

Note: Case (3, 1; A) or (1, 3; B) is defined in Table 2. The variables in the first col-
umn are defined in the text of Appendix F. Standard errors clustered on individuals
in parentheses; ***p < 0.01; **p < 0.05; *p < 0.1.

The regression results are presented in Table9. First, let us see the vari-
ables that have been examined in Table7. The coefficients of Voted ar t — 1,
Won at t — 1, and Voted and Won at t — 1 are not consistent with those
in Table7. This is because these three variables in Table 9 do not represent
subjects” choices and the election outcome in the last period, but represent
those in the last time that subjects were in the frontrunner party. The co-
efficient of Lead = 0 or —1 is significantly positive, consistent with that in
Table7, implying that subjects’ propensity to vote increased with their be-
liefs of being pivotal. Next, we see Lead of the majority if in majority, which
is used to test the bandwagon effect. The coefficient of Lead of the majority
if in majority is significantly negative, implying that when subjects believed
that their party was the frontrunner in the election, their propensity to vote
decreased with the number of the votes for their party. In other words, this
result shows that the bandwagon effect did not occur in my experiment.
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Appendix G Risk aversion

I also examine whether the high turnout of subjects of the frontrunner party
was due to risk aversion. Recall that my experimental data show that a
subject of the frontrunner party was willing to pay an additional 2.77 points
to increase her party’s probability of not losing from 0.9 to 1. This implies
that if only the effect of risk aversion is considered to explain the turnout
rate, the curvature of the utility function has to be smaller than 0.1.

More specifically, in the CC treatment, theoretically, the turnout rate of
subjects of the frontrunner party is 0.407 and that of its competing party,
or the underdog party, is 0.465. Hence, if a subject i of the frontrunner
party chooses to vote, there is a probability of 0.465° for a tie outcome (i.e.,
all 3 passive partisans of the underdog party choose to vote), and there is a
probability of 1 — 0.465° that the frontrunner party wins the election. If
the tie outcome occurs, subject i obtains 11 points minus i’s voting cost; if
the frontrunner party wins the election, subject i obtains 21 points minus
i’s voting cost.

According to Tversky and Kahneman (1992), a subject’s utility function
can be represented as a two-part power function of the form

X* if x>0,
v(x) = { “A(=x)P i x <0,
with the weighting functions w(p) = [(p”)/((p” + (1 — p)")¥/?)] and
w(p) = [(P")/((P’ + (1 — P)*)/)], where y = 0.61 and § = 0.69.
Substituting the payoff and the corresponding probability for each outcome
into the model proposed by Tversky and Kahneman (1992) gives subject i’s
expected utility from voting, which is a function of « (i.e., the curvature of
the utility function). Similarly, subject i’s expected utility from abstaining
can be calculated, which is also a function of a. By definition, the critical
voting cost makes i ’s expected utility from voting equal to i s expected utility
from abstaining. That is, with a critical voting cost, the corresponding o
can be obtained. With the observed critical voting cost of 7.25, & must be
smaller than 0.1.

However, & < 0.1 is not consistent with the values found in the liter-
ature on risk aversion. For example, according to Tversky and Kahneman
(1992), at the aggregate level, the curvature of the utility function measuring
the risk attitude is 0.88. Similar values ranging from 0.84 to 0.97 have been
found in many other studies (Fennema and van Assen, 1998; Abdellaoui,
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2000; Etchart-Vincent, 2004; Schunk and Betsch, 2006; see Abdellaoui,
Bleichrodt, and Paraschiv, 2007 for an overview). As a result, the pivotal
voter model combined with only the risk aversion effect cannot successfully
explain the observed high turnout of subjects of the frontrunner party in my
experiment.

Appendix H Estimation

From a voter’s point of view, voting and abstaining can be viewed as two
lotteries, lottery V and lottery A. To consider the effect of disappointment
aversion, I use the GDA model proposed by Routledge and Zin (2010) to
calculate the certainty equivalent ;£ (V) for lottery V and the certainty equiv-
alent L (A) for lottery A. Specifically, a certainty equivalent p(p) for lottery
P can be obtained by the following equation, or equation (11):

uup) =Y p(x)ul) =6 Y px) (UGP) —u(x))),

XjeX Xj<épu(p)

where X;j is an outcome with probability p(Xj), and 6 and § are preference
parameters that I want to estimate. For simplicity, I assume that U(X;) = X;.

The following shows how to apply the GDA model to the frontrunner
party. For a subject of the frontrunner party, there are two outcomes for
lottery V, TIE and WIN, where TIE means 11 points and WIN means
21 points. The probability for the TIE outcome is the probability that
3 subjects of the competing party turn out to vote, which is 0.465” since
the theoretical turnout probability of a subject in of the underdog party is
P5(3, 1) = 0.465. The probability for the WIN outcome is the probability
that there are fewer than 3 subjects of the competing party turning out to
vote, which is 1 — 0.465°,

For lottery A, there are three outcomes: WIN, TIE, and LOSE (which
means 1 point). In addition, if a subject chooses lottery A, she does not
need to pay her voting cost, which is privately drawn in the experiment.
The probabilities for LOSE, TIE, and WIN are respectively p;, p,, and
(I — ps — P2), where Py, indicates that there are N subjects of the underdog
party turning out to vote. I use P§(3,1) = 0.465 to calculate ps, P, and
(1—-ps—p2).

With the information about the outcomes and the probabilities, each
(0, 8) pair gives a certainty equivalent (V) for lottery V and a certainty
equivalent i (A) for lottery A, respectively representing the expected payoffs
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from voting and abstaining. Then, to allow bounded rationality, I follow in-
dividual choice behavior research to consider a probabilistic choice function
with a noise parameter A to capture the sensitivity of choices to expected
payoffs. Hence, the probability that subject i chooses to vote is expressed as

etn(V;0.8.a)
Pr (choose to vote) = 0j; = RV SRR (12)
where G is subject i’s voting cost.
From the experiment I have each subject’s decision—ia, i = 1,---,n,

a € {1,0}. Then, the maximum likelihood estimates of 6 and 8 can be
obtained by the following log-likelihood function:

N
max InL (6,6, 21d) =;dnln [011(6, 8, 1)]

+ (1 —din) In[(1 —0i1(0,8,2)],
s.t. w(V,q) = Z p(xj)xj —0 Z p(xj) (8M(V,Ci) —Xj),

XjeX Xj<du(V)
A =" pX)x—0 Y p(x)(BrA —x),
XjeX Xj <8 (A)

where Ng represents the number of observations for the frontrunner party.
With the voting decision data from subjects of the frontrunner party, the
maximum-likelihood parameter estimates (and standard errors) are: 6 = 50
(0.07), 8 = 0.138 (0.07), and A = 17.02 (0.12).

Substituting # = 50 and § = 0.138 into equation (11) yields u(V) =
19.95 and (A) = 12.1. The difference between (V) and u(A) is 7.82,
which represents the critical voting cost after considering the GDA effect for
subjects of the frontrunner party. With the same method presented above,
I can obtain the critical voting cost with the GDA effect for each case. The
results are presented in Table 10.
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Table 10: Comparison between with and without GDA for all cases

Observed

critical voting

Theoretical
critical voting

Theoretical
critical voting

cost cost (w/GDA)  cost (w/o GDA)

Treatment CC

Case (1,1; A) or (1, 1; B) 6.99 2.81 6.30
Case (3,1; A) or (1, 3; B) 7.25 7.82 4.48
Case (1,3; A)or (3, 1; B) 4.42 5.00 5.12
Case (3, 3; A) or (3, 3; B) 9.57 10.00 10.00
Treatment CP

Case (1,0.4; A) 6.09 4.09 5.78
Case (1, 0.4; B) 7.45 4.19 5.91
Case (3,0.4; A) 8.73 9.14 8.38
Case (3,0.4; B) 5.86 5.57 7.25
Treatment PC

Case (0.6, 1; A) 7.27 5.12 5.50
Case (0.6, 1; B) 6.97 3.52 5.50
Case (0.6, 3; A) 6.70 6.96 8.66
Case (0.6, 3; B) 8.21 9.53 9.54
Treatment PP

Case (0.6, 0.4; A) 8.09 4.50 7.63
Case (0.6, 0.4; B) 7.61 4.39 7.27

Note: The variables in the first column are defined in Table2. Theoretical criti-
cal voting cost (w/ GDA) refers to the predicted critical voting cost of the GDA
model. Theoretical critical voting cost (w/o GDA) refers to the predicted critical
voting cost of the benchmark model presented in Section 2. The absolute differ-
ence between the the predicted critical voting cost of the GDA model and that of
the benchmark model shows the disappointment level.
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